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Abstract

The integration of unstructured data, such as text created by borrowers, offers new opportunities
for improving credit default prediction but also introduces new risks. This study examines the ro-
bustness of transformer-based credit scoring models that utilize textual data and assesses their vul-
nerability to adversarial attacks. Using peer-to-peer lending data, we show that small, semantically
neutral changes in loan descriptions can substantially alter model outputs. These vulnerabilities
expose lenders and borrowers to economic risks through distorted risk assessments and mispriced
loans. We evaluate two mitigation strategies: adversarial training and topic modeling. Adversarial
training improves robustness without compromising predictive performance. Topic modeling pro-
vides a more interpretable and stable representation of borrower narratives. An economic analysis
confirms that robust models reduce mispricing and improve outcomes for all parties. The findings
underscore the importance of robustness as the use of unstructured data in credit scoring becomes
more accessible.
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1 Introduction

Credit default prediction is a critical field within financial risk management with significant implica-

tions for lenders, borrowers, and the broader financial system. Traditionally, credit scoring models

have relied primarily on structured data, such as financial ratios, borrower demographics, and credit

history (Baesens et al., 2003; Crook et al., 2007). The advent of machine learning models, including

decision trees, random forests, gradient boosting, and neural networks, has further improved predictive

accuracy by capturing complex, nonlinear relationships within structured data (Crook et al., 2007;

Lessmann et al., 2015). Ensemble methods, in particular, have consistently outperformed simpler

approaches in this domain (Dumitrescu et al., 2022; Fitzpatrick & Mues, 2016; Gunnarsson et al.,

2021; Lessmann et al., 2015; Xia et al., 2017).

With the rise of digital technologies, the availability of unstructured data—such as text from loan

applications, digital footprints, and social media activity—has expanded, offering new information for

credit risk assessment. Recent studies demonstrate that such unstructured data can contain impor-

tant credit-relevant signals, thereby enhancing the accuracy of credit default predictions substantially

(Berg et al., 2020; Iyer et al., 2016; Lin et al., 2013; Tsai & Wang, 2017). Prior literature has first

addressed the challenge of utilizing this unstructured data through various information extraction

methods, including the identification of specific textual features such as the frequency of identity

claims, readability, and sentiment, which are linked to borrower quality (Chen et al., 2018; Dorfleitner

et al., 2016; Herzenstein et al., 2011). More recently, deep learning techniques, including modern

transformer models, have shown promising results in automatically processing and analyzing unstruc-

tured data from text for credit scoring (Ahmadi et al., 2018; Borchert et al., 2023; Fitzpatrick & Mues,

2021; Kriebel & Stitz, 2022; Mai et al., 2019; Matin et al., 2019; Stevenson et al., 2021; Wu et al.,

2023; Yu et al., 2024).

Despite these advances, growing attention in artificial intelligence research has focused on the

robustness of deep learning models. In particular, such models have been shown to be vulnerable to

adversarial attacks—small, often imperceptible changes to input data that can lead to significant shifts

in model predictions (Barreno et al., 2010; Goodfellow et al., 2014; Szegedy et al., 2014). While much

of this work has focused on image data, recent studies have also revealed similar vulnerabilities in

natural language processing tasks, including sentiment analysis, text classification, and named entity

recognition (Alzantot et al., 2018; Wang et al., 2019; Zang et al., 2019). These findings raise serious
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concerns for high-stakes applications like credit scoring, where even subtle textual variations in loan

applications could lead to significant changes in predicted risk. Although adversarial robustness has

received increasing attention in natural language processing, its implications for credit scoring models

that integrate unstructured borrower narratives remain largely unexplored.

This paper addresses that gap. We provide a systematic assessment of the robustness of credit

scoring models that incorporate unstructured text data. We demonstrate that even subtle changes in

borrower-provided narratives—such as the replacement of a single synonym—can significantly alter

model predictions. These findings underscore a critical risk: while textual data can improve predic-

tive performance, it also opens the door to strategic manipulation and unintended disparities, where

borrowers may be unfairly penalized due to innocuous linguistic variation.

To address this challenge, we make five main contributions. First, we identify and analyze the

vulnerabilities of credit default prediction models that incorporate unstructured data to adversarial

attacks. Using peer-to-peer lending data, including textual descriptions provided by borrowers along-

side structured financial information, we evaluate manipulated text inputs and assess the extent to

which these models can be misled into making inaccurate predictions.

Second, we use explainable artificial intelligence conducting a word attribution analysis at the

sentence level to assess the vulnerabilities in more detail. By analyzing how even subtle changes

in word choice alter the model’s output substantially, we show how a specific choice of words can

disproportionately influence risk predictions. This reveals model sensitivities and biases that may

affect fairness in credit scoring.

Third, we examine adversarial training as a potential defense strategy. By retraining models on

manipulated examples, we find that this approach substantially improves robustness, mitigating the

effects of adversarial inputs and preserving performance under attack.

Fourth, we explore topic modeling as an alternative textual representation that may offer greater

inherent stability. Instead of relying on fine-grained word embeddings, this approach condenses bor-

rower narratives into high-level thematic structures. We find that topic-based models are significantly

less sensitive to adversarial perturbations, suggesting that abstraction away from specific word choices

can enhance robustness without sacrificing interpretability.

Fifth, we assess the economic implications of adversarial vulnerabilities by linking shifts in pre-

dicted default probabilities to changes in loan pricing. Our results demonstrate that adversarial attacks

can lead to substantial misjudgments in loan conditions offered to customers. Interestingly, we show
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that this could not only disadvantage lenders but often also borrowers.1 Through this analysis, we

highlight the real-world consequences of adversarial vulnerabilities and the importance of adopting

robust models to minimize economic risks for lenders and borrowers alike.

The remainder of this paper is structured as follows: Section 2 reviews the relevant literature on

credit default prediction and the integration of unstructured data. Section 3 outlines our data sources

and preprocessing steps. Section 4 describes our methodology for fine-tuning BERT models, generating

adversarial samples, assessing model robustness, applying adversarial training, and implementing topic

modeling. Section 5 presents the empirical results, including the impact of adversarial attacks on

model performance. Section 6 discusses the economic implications of adversarial attacks, and Section

7 concludes the study.

2 Related Literature

The task of predicting credit default has long relied on structured data, such as financial ratios, credit

scores, and borrower demographics. Foundational studies, including those by Baesens et al. (2003)

and Kumar and Ravi (2007), systematically compared classification algorithms and demonstrated

that more complex models, such as neural networks, often outperform traditional regression-based

approaches. Subsequent research has reinforced these findings. Studies by Lessmann et al. (2015),

Fitzpatrick and Mues (2016), Xia et al. (2017), Gunnarsson et al. (2021), and Dumitrescu et al.

(2022) emphasize the strong predictive performance of ensemble methods, particularly random forests

and gradient boosting. More recently, methodological advances have included graph representation

learning (Shi et al., 2024) and the application of transformer-based models to multi-horizon default

prediction (Korangi et al., 2023).

Building on these foundations, more recent research has expanded to include unstructured data,

recognizing its potential to further improve credit default prediction. Unstructured data sources, such

as text, images, and social media activity, contain credit-relevant information that is often not captured

by structured data. Lin et al. (2013) analyze online friendships in peer-to-peer lending networks

and reveal that these social connections serve as strong indicators of creditworthiness, effectively

reducing information asymmetry and improving default prediction. Iyer et al. (2016) investigate peer

assessments on peer-to-peer lending platforms, finding them to be more predictive of default than
1The results are, therefore, also of high importance for the debate on fairness in credit scoring (Kozodoi et al., 2022).
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conventional credit scores. Similarly, Óskarsdóttir et al. (2019) integrate mobile phone data and social

network analytics with structured data, yielding significant improvements in predictive accuracy. Berg

et al. (2020) demonstrate that digital footprints, such as device type and online behavior, can not only

match but also complement traditional credit bureau scores in predicting defaults. Zandi et al. (2025)

use the geographic proximity and information on mortgage providers to include borrower connections

and use this to enhance probability of default predictions. With respect to text data in credit scoring,

several studies have shown that borrower-provided narratives can contain predictive signals related

to default risk. Herzenstein et al. (2011) find that identity claims in loan application in peer-to-peer

lending increase the likelihood of funding but are associated with poorer loan performance, including

a higher likelihood of default or late payment. Dorfleitner et al. (2016) link textual characteristics

such as spelling errors, text length, and positive keywords to successful funding, though their influence

on default risk is less clear. Chen et al. (2018) show that excessive punctuation reduces readability,

negatively affecting both funding and default rates. Gao et al. (2018) find that clearer, more positively

worded loan descriptions are correlated with lower default rates. Tsai and Wang (2017) demonstrate

a strong correlation between financial sentiment words in texts and financial risk, while Agarwal et al.

(2016) emphasize the predictive value of linguistic tone in credit rating reports, revealing the role of

sentiment in assessing credit risk.

Beyond identifying predictive patterns in text, a growing number of studies have focused on sys-

tematically extracting and operationalizing such information through natural language processing

techniques. Netzer et al. (2019) and Xia et al. (2020) employ methods such as term frequency-inverse

document frequency (TF-IDF) and topic modeling to convert textual data into structured features for

use in predictive models. Jiang et al. (2018) similarly apply latent Dirichlet allocation to loan descrip-

tions, showing that topic-based features improve default prediction when combined with structured

data. Fitzpatrick and Mues (2021) utilize biterm topic modeling to extract features from short loan

texts, effectively addressing challenges posed by brevity in peer-to-peer lending narratives. In a related

approach, Wang et al. (2020) propose a method for identifying semantic soft factors by mapping loan

texts into an embedding space and clustering terms into semantic cliques.

Building on these approaches, more recent studies apply deep learning techniques to further en-

hance the processing of textual data in credit risk assessment. Ahmadi et al. (2018) use dependency

sensitive convolutional neural networks combined with sentiment analysis to detect signs of financial

distress in business reports, effectively identifying early indicators of bankruptcy. Matin et al. (2019)
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utilize a convolutional recurrent neural network to analyze management statements and auditor re-

ports, achieving notable improvements in predictive accuracy for large firms. Similarly, Mai et al.

(2019) evaluate both average embedding models and convolutional neural networks for bankruptcy

prediction based on textual disclosures, finding that these methods, particularly average embedding

models, enhance predictive accuracy.

A further advancement in modeling textual data for credit risk assessment involves the use of

transformer-based architectures. Stevenson et al. (2021) apply BERT to the task of predicting small

business loan defaults. Their study shows that while BERT significantly improves predictive perfor-

mance when used alone, combining it with structured data does not yield additional improvements in

their data. Kriebel and Stitz (2022) conduct a benchmark comparison of various deep learning models,

including transformers, in the context of peer-to-peer lending. They find that integrating text-based

predictions with structured features leads to a significant improvement in overall model performance.

Interestingly, they also report that simpler architectures, such as average embedding neural networks,

can perform comparably to more complex transformer-based models. Extending this line of work,

Borchert et al. (2023) demonstrate that textual information from company websites can be effectively

leveraged using transformers to improve business failure prediction.

Recent studies have also begun to explore the potential of generative AI, such as ChatGPT,

in the context of credit scoring. Wu et al. (2023) show that AI-generated text can enhance the

predictive accuracy of credit models. Building on this, Yu et al. (2024) propose a GPT-LGBM

framework that integrates ChatGPT with LightGBM, combining structured data with psychological

features extracted from loan applicants’ narratives. This approach yields substantial improvements in

predictive performance. These developments highlight the growing relevance of large language models

and generative AI in advancing credit risk assessment.

In light of these advances, the robustness of deep learning models has emerged as a critical con-

cern. Despite their strong predictive performance, such models are known to be highly sensitive to

adversarial attacks—small, often imperceptible perturbations to the input that can lead to substantial

changes in output (Szegedy et al., 2014). While this vulnerability has been extensively studied in

image classification (Goodfellow et al., 2014; Guo et al., 2017b; Nguyen et al., 2015), similar risks

have been documented in natural language processing tasks (Alzantot et al., 2018; Wang et al., 2019;

Zhang et al., 2020). In the textual domain, adversarial attacks typically involve subtle modifications to

word choice or phrasing that preserve the original meaning for human readers but cause the model to
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misclassify. Techniques such as synonym substitution (Zang et al., 2019) or word-level perturbations

guided by language models (Garg & Ramakrishnan, 2020) illustrate how easily text-based models can

be manipulated. Empirical research confirms that such manipulations can substantially degrade model

performance across various natural languages processing tasks, including sentiment classification (Xu

et al., 2021) and named entity recognition (Lin et al., 2021). These vulnerabilities raise particular

concerns in high-stakes applications like credit scoring, where incorrect predictions can have serious

financial and ethical implications for both lenders and borrowers.

Despite the increasing adoption of deep learning and transformer-based models in credit scoring,

their vulnerability to adversarial manipulation remains largely unexplored. This is particularly critical

in applications involving unstructured text data, where subtle and semantically plausible changes in

wording can disproportionately influence model outputs. While adversarial robustness has received

growing attention in natural languages processing, little is known about how these attacks affect

financial decision-making contexts, where model predictions can directly impact loan pricing, credit

access, and fairness. This gap underscores the need to systematically assess the susceptibility of

text-based credit scoring models to adversarial attacks and to evaluate methods—such as adversarial

training—that can improve their robustness. In doing so, our study extends the literature on credit

risk modeling by addressing model reliability and resilience under adversarial conditions.

3 Data

For the analysis we utilize data from Lending Club. The dataset includes loans issued between 2007 and

2014. During this time, borrowers could provide textual descriptions as part of their loan applications

to describe the purpose of their loan or give a description of themselves. The full dataset, when

only considering data with descriptions, consists of over 125,000 loans. The data was restricted to a

subset where descriptions contained between 40 and 115 words. We set the lower limit at 40 words to

ensure that each description provides meaningful context about the borrower and loan purpose. The

upper limit of 115 words corresponds to the 95% percentile of the word count distribution, allowing to

exclude excessively long descriptions that might introduce noise into the analysis. The final dataset

contains 40,229 fully funded loans.

The dataset includes a comprehensive set of structured data, such as borrower income, credit score,

and delinquencies, alongside the unstructured loan descriptions. The complete feature set aligns with
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commonly accepted determinants of credit defaults in peer-to-peer lending, similar to those used in

prior studies by Fitzpatrick and Mues (2021) or Kriebel and Stitz (2022). Definitions and summary

statistics for all structured variables in contained in the dataset are provided in Appendix A in Table

6.

In preparing the textual data for analysis, we applied standard cleaning techniques to the loan

descriptions, including the removal of irrelevant metadata and converting all text to lowercase, similar

to Kriebel and Stitz (2022). We choose not to apply lemmatization or stemming based on our use of

BERT, a transformer-based model that captures the contextual meaning of words without requiring

such preprocessing steps (Devlin et al., 2019).

The dataset exhibits a significant class imbalance with 85.5% of the loans being non-defaulted

and only 14.5% being defaulted. This imbalance poses challenges for predictive modeling, as it can

lead to models that are biased towards the majority class. To address this, we implement focal loss,

a technique designed to mitigate bias and enhance the model’s ability to accurately predict both

defaulted and non-defaulted loans in subsequent analyses.

To provide an initial description of the textual data, Figure 1 displays the top 10 most frequently

occurring words. These frequently used terms, such as ”credit”, ”loan”, ”pay”, and ”debt”, reflect the

primary financial concerns and priorities of the borrowers. The prominence of these words suggests a

strong focus on creditworthiness and financial obligations in the narratives provided by the borrowers.

Figure 1: Bar plot showing the top 10 most frequent words in loan descriptions. Stop words have
been removed to highlight more meaningful terms related to financial context.
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4 Methodology

The study uses BERT as a method to exploit the textual information embedded in the loan de-

scriptions. BERT is a common choice of transformer model that has been widely recognized for its

effectiveness in capturing nuanced meanings in text. Previous studies, such as those by Stevenson

et al. (2021), Kriebel and Stitz (2022), and Wu et al. (2023), have successfully utilized BERT to

enhance credit default predictions by leveraging unstructured text data. We follow this path in order

to study the robustness of transformer models to adversarial attacks. This section outlines further

design decisions and provides a detailed explanation of the methodologies employed.

4.1 Model fine-tuning

BERT is a transformer-based model that has been pre-trained on vast amounts of text data, allowing

it to understand and capture the deep contextual relationships within language (Devlin et al., 2019).

The architecture of BERT is built on a stack of transformer layers, which leverage self-attention

mechanisms to process each word in a sentence relative to all other words, rather than just in a

sequential order. The model is pre-trained in a task-agnostic manner and subsequently fine-tuned for

specific downstream applications. This approach has proven highly effective for a variety of natural

language processing tasks (Devlin et al., 2019).

To adapt BERT for the task of credit default prediction, we fine-tune the model to identify high-

risk loans. This involves adding a classification layer on top of BERT and retraining the model

on the labeled defaulted and repaid loans. This approach allows us to retain the general language

understanding BERT has learned from its pre-training, while also adapting the model to the specific

nuances and patterns relevant to predicting credit default.

For the fine-tuning process, we split the dataset into three distinct subsets: a training set, a

validation set, and a test set. 20,000 observations were allocated to the training set, 10,000 to the

validation set, and the remaining observations were reserved for testing. The training set is used to

fine-tune the BERT model, while the validation set served to monitor the model’s performance and

guide hyperparameter tuning, ensuring that the model generalizes well to unseen data. The test set

is employed to provide an evaluation of the model’s performance.

To address the challenge of class imbalance during the fine-tuning process, we employ focal loss,

introduced by Lin et al. (2017). Focal loss is designed to handle class imbalance by reducing the loss
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contribution from well-classified instances and place more emphasis on the harder-to-classify examples.

This approach is beneficial in our setting, as it mitigates the model’s tendency to favor the majority

class (non-defaults) and enhances its capability to correctly predict the minority class (defaults). By

adding a modulating factor to the standard cross-entropy loss, focal loss down-weights the loss for

correctly classified examples, allowing the model to focus more on the challenging, misclassified cases.

In our application, we follow a sample-dependent schedule for this modulating factor, as proposed

by Mukhoti et al. (2020), which adjusts the model’s focus based on the confidence level of each

prediction. This adaptive approach helps to ensure that the model remains robust across different

levels of prediction confidence, ultimately leading to a more balanced model (Mukhoti et al., 2020).

To find the hyperparameters, we perform a grid search, following the guidelines provided by De-

vlin et al. (2019). This grid search explores different configurations of the learning rate, the batch

size, and the number of epochs to determine the combination that delivers the best performance on

the validation set. The specific sets of hyperparameters considered and those selected based on the

validation sample performance are detailed in Table 7 of the Appendix B.

After fine-tuning the model, we apply temperature scaling as a post-processing step to calibrate

the model’s output probabilities. Temperature scaling, introduced by Guo et al. (2017a), adjusts the

confidence of the model’s predictions by scaling the logits before applying the softmax function, which

recalibrates the output probabilities. In the context of credit default prediction, it is often crucial

that predicted probabilities reflect the true likelihood of default rather than just separating default

from non-default. Accurate probabilities allow lenders to make informed decisions about interest

rates, which is also addressed in this work. The optimal temperature parameter is determined by

minimizing the cross-entropy loss on the validation set, as proposed by Mukhoti et al. (2020). The

optimal temperature parameters selected based on the validation data are included in Table 7 of the

Appendix B.

4.2 Ex-post word attribution analysis

To systematically identify model vulnerabilities and gain a deeper understanding of how the BERT

model interprets input text, we conduct a word attribution analysis on the initial fine-tuned BERT

model. This analysis highlights which tokens the model relies on most heavily when estimating default

risk, thereby revealing points of susceptibility to manipulation.

We employ an integrated gradients approach (Sundararajan et al., 2017), a gradient-based attri-
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bution technique that assigns importance scores to individual input tokens. For classification tasks,

integrated gradients measure how the model’s prediction shifts as the input transitions from a baseline

(such as zero embeddings or neutral tokens) to the actual text. By accumulating gradients along this

path, the algorithm assigns an attribution score to each token, indicating how strongly that token

contributes to the final prediction. Higher absolute values of these scores signify greater influence

on the model’s decision, with positive scores elevating the default risk estimate and negative scores

reducing it (Janizek et al., 2020).

We compute these token-level attribution scores for every text sample in the training data. This

process helps identify specific words or phrases that the model considers critical when forecasting a

default. By examining tokens with the highest attribution scores, we gain insight into the model’s

primary decision drivers, uncovering both potential biases and vulnerabilities. Such knowledge is vital

for understanding how malicious (or even accidental) textual changes can lead to disproportionate

fluctuations in predicted default probabilities, thus underscoring the broader robustness concerns at

the center of this study.

4.3 Simulating adversarial attacks and enhancing model robustness

To explore the overall robustness of the BERT-based credit default prediction model to adversarial

attacks, we employ BERT-based Adversarial Examples (BAE), a method developed by Garg and

Ramakrishnan (2020) to generate adversarial examples that maintain the semantic coherence and

grammatical correctness of the original texts. These adversarial examples exploit model sensitivities

by making subtle perturbations that are difficult for humans to detect but can mislead the model.

The BAE method starts by evaluating the importance of each token in the input text with respect to

the classification decision made by the fine-tuned BERT model. This evaluation is done by measuring

the decrease in the model’s confidence when a token is removed, thereby identifying which tokens are

most critical to the model’s prediction. These critical tokens are then targeted for perturbations to

maximize the impact on the model’s output.

BAE applies two types of perturbations: token replacement and token insertion. In this study,

we focus on token replacement. The identified critical token is masked, and the Masked Language

Model (MLM) component of BERT is used to predict plausible substitutes based on the surrounding

context. These candidate replacements are then filtered using semantic similarity scores derived from

the Universal Sentence Encoder (USE) (Cer et al., 2018), ensuring that the modified text remains
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semantically close to the original. This careful filtering avoids the generation of unnatural or easily

detectable adversarial inputs, addressing a key limitation of earlier methods (Alzantot et al., 2018; Di

Jin et al., 2019; Ren et al., 2019).

In our setting, we apply this technique in two directions: generating adversarial samples that

increase the predicted probability of default, and generating samples that decrease the predicted

default probability. While a primary concern is that adversarial attacks could be used to lower

default predictions and secure more favorable loan conditions, it is equally important to consider the

opposite scenario. Small, unintentional changes in word choice could possibly inadvertently raise the

predicted default probability, leading to such unfair lending conditions. In this sense, our analysis

of adversarial text generation also reflects a broader fairness concern: that credit scoring models

may disproportionately penalize some individuals based on minor linguistic nuances, unintentionally

increasing their expected risk of default simply due to the phrasing of their loan applications. By

evaluating both the increases and decreases in predictions, we aim to ensure that models are robust

not only against intentional manipulation but also against unfair outcomes that might arise from

innocent variations in text.

To mitigate the vulnerabilities revealed by this procedure, we employ adversarial training, a strat-

egy used to enhance model resilience by exposing the model to adversarial examples during training

(Kurakin et al., 2016; Morris et al., 2020). Specifically, we generate adversarial samples from the

training set using the two-directional BAE approach described above. These newly created adver-

sarial instances, some increasing and others decreasing the model’s predicted probabilities of default,

are then added to the original training set, producing an augmented dataset. By fine-tuning the

BERT model on this augmented dataset, we aim to decrease the model’s sensitivity to adversarial

manipulations.

To evaluate the effectiveness of this training procedure, we generate a new set of adversarial test

examples and compare the performance of the adversarially trained model to the baseline. This

comparison provides insight into whether the training method successfully reduces susceptibility to

adversarial influence without compromising predictive performance on clean data.

4.4 Topic modeling

To complement the use of transformer models for processing unstructured textual data, we also incor-

porate an alternative approach based on topic modeling. The primary idea is to condense the semantic
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content of loan descriptions into high-level topics, which may exhibit greater stability against minor

textual perturbations. By abstracting from specific word choices to broader thematic structures, topic

modeling could serve as a more resilient method for credit scoring under adversarial conditions.

For this purpose, we employ BERTopic (Grootendorst, 2022), a topic modeling technique that

merges the representational power of large language models with traditional clustering and dimen-

sionality reduction strategies. Specifically, BERTopic begins by generating dense vector embeddings

of each loan description in the training and validation data obtained from our fine-tuned BERT model.

These high-dimensional embeddings are then projected into a lower-dimensional space using UMAP

(McInnes et al., 2018), which is designed to preserve both local and global data structure while re-

ducing computational complexity. Next, the algorithm applies HDBSCAN (Campello et al., 2013) to

detect clusters in this reduced embedding space. HDBSCAN adaptively determines the number of

clusters and labels outliers as noise, making it particularly well-suited for data with variable-density

regions. Finally, BERTopic represents each cluster by extracting its most distinctive keywords through

class-based TF-IDF (c-TF-IDF). By comparing term frequencies across clusters rather than across in-

dividual documents, c-TF-IDF pinpoints the words that uniquely characterize each topic. Through

this multi-step process BERTopic produces thematically coherent topics that serve as higher-level

representations of the original loan descriptions.

To assess the predictive value of this condensed textual information, we integrate the identified

topics into a logistic regression for default prediction. Specifically, we treat the topic labels as a

categorical variable. By encoding each text’s assigned topic, the model learns the relationship between

particular topics and default outcomes without relying on the original input texts.

Because topic modeling abstracts away from specific word usage, small adversarial modifications,

such as synonym replacements, are less likely to alter topic assignments. Thus, this approach may

provide inherent robustness without additional adversarial defenses. Moreover, it offers improved

interpretability relative to dense transformer embeddings, enabling insights into thematic drivers of

credit risk. This alternative approach also enables a direct comparison of the granularity-performance

trade-off: it allows us to assess whether the more granular information exploited by BERT substantially

improves predictive power compared to the condensed, topic-based representations.
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4.5 Aggregating structured and unstructured data

To combine the predictive power of structured and unstructured data in the credit default prediction

task, we incorporate both the BERT-based predictions and the topic-level features into logistic re-

gression models alongside the traditional structured variables. This method enables the integration

of BERT-based predictions with traditional structured financial data in a modular and transparent

manner. In particular, this approach reflects a potential modular inclusion where practitioners that

currently still often use logistic regressions can add textual information in an additive way with-

out entirely replacing existing systems. In order for the logistic regression to not overemphasize the

predicted probabilities from the BERT models, we fit the logistic regression model using only the

validation dataset.

For the analysis, we estimate four different logistic regression models: the first model uses only the

structured features contained in the data; the second model incorporates both structured information

and the predicted probabilities of default from the initially fine-tuned BERT model; the third model

combines structured information with the predicted probabilities from the BERT model, which has

been enhanced through adversarial training; the fourth model combines structured features with the

categorical topic labels derived from BERTopic. Finally, temperature scaling is applied to all logistic

regression models, following the procedure described in Section 4.1, to ensure the output probabilities

are calibrated and interpretable.

This integration strategy enables a fair comparison across model architectures and allows us to

examine how different types of textual representations contribute to credit default prediction when

combined with conventional financial data.

4.6 Evaluation metrics

To evaluate the predictive performance of our models, we use two complementary metrics: the Area

Under the Receiver Operating Characteristic Curve (AUC) and the Area Under the Precision-Recall

Curve (AUCPR).

The AUC is a widely used measure in credit scoring and risk prediction that captures the model’s

ability to distinguish between defaulters and non-defaulters across all classification thresholds (Fitz-

patrick & Mues, 2021; Gunnarsson et al., 2021; Kriebel & Stitz, 2022; Lessmann et al., 2015).

In addition, we report the AUCPR to provide a more informative evaluation in the presence of class
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imbalance. The AUCPR summarizes the trade-off between precision (positive predictive value) and

recall (true positive rate) over all thresholds. This metric is especially relevant in our setting, where

only 14.5% of the loans in the dataset are defaulted, leading to a strong class imbalance. Unlike AUC,

the baseline for AUCPR is not fixed at 0.5 but depends on the prevalence of the positive class. In

our case, the baseline AUCPR corresponds to the proportion of defaults in the dataset, i.e., 14.5%. A

random classifier would thus achieve an AUCPR close to 0.145, and models must substantially exceed

this baseline to demonstrate meaningful predictive power (Boyd et al., 2013; Sofaer et al., 2019).

Using both metrics allows us to detect whether adversarial effects primarily degrade the overall

ranking (AUC) or disproportionately impact the identification of rare events (AUCPR). This dual-

metric evaluation is particularly important for assessing robustness under adversarial conditions

Furthermore, Section 6 focuses on the economic implications of adversarial attacks by using the

rates that could be offered to customers as an economic measure to assess how adversarial manipula-

tions affect loan pricing and profitability.

5 Results

In this section, we present the empirical results of our analysis. We begin by evaluating the predictive

performance of the proposed models on the original test data. We then examine the internal mechanics

of the fine-tuned BERT model using word attribution analysis to identify the most influential tokens

and potential vulnerabilities. Building on these insights, we assess the impact of adversarial attacks on

model performance, followed by an evaluation of the effectiveness of adversarial training as a defense

strategy. We further explore topic modeling as an alternative, inherently robust textual representation

and analyze the thematic structure captured by the identified topics. Finally, we assess variable

importance across models to quantify the contribution of structured and unstructured features to

default prediction.

5.1 Performance evaluation

We first evaluate the predictive performance of the different models on clean data.

Table 1 reports both the AUC and the AUCPR for each model. AUCPR is particularly informative

in our setting due to the class imbalance in the data, with only 14.5% of loans being defaulted.

The BERT model, which uses only textual loan descriptions, achieves an AUC of 0.6399 and an
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AUCPR of 0.2371, indicating considerable discriminative power given that only one type of informa-

tion is used. The Topic Model, based on logistic regression using topic labels as features, performs

modestly below BERT with an AUC of 0.6019 and an AUCPR of 0.2288. The Structured Model,

which relies exclusively on structured features contained in the data, achieves an AUC of 0.7018 and

an AUCPR of 0.2806, reflecting that structured variables alone provide a solid foundation for credit

default prediction.

Table 1: Model performance on the test set using AUC and AUCPR.

BERT Topic Structured Combined Combined Topic
AUC 0.6399 0.6019 0.7018 0.7141 0.7140
AUCPR 0.2371 0.2288 0.2806 0.2914 0.2880

Combining textual and structured data yields the strongest predictive performance. The Com-

bined Model, which integrates structured features with predictions from the BERT model, achieves

an AUC of 0.7141 and an AUCPR of 0.2914, outperforming all individual models. Likewise, when

topic representations are incorporated alongside structured variables in the Combined Topic Model,

predictive performance improves substantially compared to the Topic Model alone, reaching an AUC

of 0.7140 and an AUCPR of 0.2880.

Interestingly, while the BERT-based model outperforms the topic-based counterpart when used in

isolation, the performance gap between the Combined Model and the Topic Combined Model is min-

imal. This suggests that despite their simplicity, topic representations can successfully capture much

of the credit-relevant information embedded in the unstructured text when paired with structured

data.2

The results confirm that incorporating textual data, either via transformer-based embeddings or

topic abstractions, improves credit default prediction, particularly when combined with structured

variables. This is well in line with many findings in the extant literature (Gao et al., 2018; Mai et al.,

2019). Notably, the best-performing models nearly double the AUCPR relative to the random baseline

of 0.145, underlining the practical value of these approaches in real-world lending settings.
2To formally evaluate the significance of the observed differences in predictive performance, we conduct pairwise

hypothesis tests. For AUC, DeLong’s test was used to assess statistical significance, while AUCPR comparisons were
performed using a nonparametric bootstrap procedure with 1,000 iterations. Full test results are provided in Appendix
C.
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5.2 Word attributions

Building on the performance results, we now examine how individual words influence model predictions

using attribution scores. This analysis sheds light on the internal logic of the BERT model and its

sensitivity to linguistic variation. We illustrate this using the following two cases:

1. “This loan is to repay credit card debt that I have. I have been trying for years to pay it down,

but with the high rates on the credit cards I am having problems doing it in a timely manner.”

2. “I financed significant dental work and have unexpected repairs on my home due to a water

leak.”

Figure 2 and Figure 3 show the attribution scores for each word in these sentences, visualizing their

contribution to the BERT model’s output. Positive attribution scores indicate that the corresponding

word contributes to an increased likelihood of credit default, whereas negative scores suggest a reduced

likelihood. The words with the highest absolute attribution scores are highlighted with dashed bars.

These would be natural candidates for adversarial attacks.

Figure 2: Bar plot displaying the word attribution scores. Words with positive attribution scores
are associated with a higher likelihood of default, while words with negative scores indicate a reduced
default probability.

In Figure 2, the BERT model shows a strong reliance on the term ”problems”, which has the

highest absolute attribution score of 0.1148. The model associates this term with financial distress

and a higher likelihood of default. In contrast, other terms such as ”loan”, ”debt”, and ”credit” have
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large negative attribution scores, indicating that these words reduce the default probability in this

context. This could suggest that the model learned to associate references to financial planning with a

higher creditworthiness. The combination of positive and negative attributions across different terms

reflects the nuanced way in which the model integrates contextual information to form its predictions.

In Figure 3, the word ”financed” exhibits a strong negative attribution score of -0.1266, indicating

that the model associates it with more responsible financial behavior, thereby lowering the predicted

probability of default. Similarly, the words ”repairs” and ”home” also have negative attribution

scores, possibly reflecting an association with financial responsibility or potentially collateral, though

to a lower extent compared to ”financed”. In contrast, the word ”unexpected” contributes positively

to the default prediction, highlighting a potential risk factor as it could imply an unforeseen financial

burden. This pattern demonstrates the model’s sensitivity to contextual cues, where terms related to

planned expenditures or property might reduce the default probability, while expressions suggesting

unpredictability increase the perceived credit risk.

Figure 3: Bar plot displaying word attribution scores. Words with positive attribution scores are
associated with a higher likelihood of default, while words with negative scores indicate reduced default
probability.

To further analyze the model’s sensitivity to adversarial attacks, we investigate how substituting

the most influential key words with synonyms impacts the associated attribution scores and the pre-

dicted probabilities. For Figure 2, replacing the term “problems” with the synonym “trouble” would

result in a notable drop in the attribution score from 0.1148 to 0.0303, leading to a substantial decrease
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in the default probability from 21.69% to 14.08%. Similarly, using “difficulties” instead of “problems”

would yield an attribution score of 0.0713 and a default probability of 16.82%. Despite the seeming

similarity between these terms, the model’s outputs shift dramatically, indicating a strong dependence

on specific high-impact words. A potential borrower that would like to obtain a favorable loan rate

and has the technical skills to detect this vulnerability could thus use this for the own benefit.

A similar pattern but with another direction emerges in Figure 3. When the term “financed” is

replaced with “funded”, the attribution score would change from -0.1266 to -0.0905, increasing the

default probability from 22.93% to 26.22%. Using the phrase “paid for” would lead to an attribution

score of -0.1076 and a corresponding default probability of 24.03%. These changes also highlight

the model’s sensitivity to subtle linguistic nuances and suggest that seemingly minor variations can

alter its interpretation of the borrower’s creditworthiness. From a borrower perspective, replacing

”problems” with one of these synonyms without being aware of the model associations could lead to

receiving a considerably worse loan offer potentially disadvantaging customers.

Addressing these vulnerabilities through using more robust models thus seems important to assess

for potentially enhancing model resilience and ensuring more reliable and fair loan pricing.

5.3 Exposure to adversarial attacks

Next, the results under the adversarial conditions are presented in Table 2. This reflects the situation

where a lender would make decisions based on a model that uses unstructured text data and faces

potential adversarial attacks. The table presents both AUC and AUCPR values for each models on

both the original and manipulated samples.

Table 2: Model performance under original and adversarial conditions using AUC and AUCPR.
Significance levels for AUC differences are calculated using DeLong’s test; AUCPR differences use
nonparametric bootstrapping. They are denoted as *** p < 0.01, ** p < 0.05, * p < 0.1.

AUC AUCPR Difference
Model Original Adversarial Original Adversarial AUC AUCPR
BERT 0.6399 0.5926 0.2371 0.1940 0.0473*** 0.0431***
Topic 0.6019 0.5988 0.2288 0.2183 0.0031* 0.0105***
Combined 0.7141 0.6954 0.2914 0.2756 0.0187*** 0.0158***
Topic Combined 0.7140 0.7123 0.2880 0.2818 0.0017** 0.0062**

The BERT model shows the steepest decline, with an AUC drop of 0.0473 and an AUCPR de-

crease of 0.0431, reflecting high sensitivity to minor semantic perturbations. In contrast, the Topic

Model exhibits only minimal performance degradation, particularly in AUC, suggesting that topic
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abstractions are less sensitive to adversarial attacks.

Interestingly, the Combined Model, despite its superior performance on clean data, falls below

the Structured Model in AUC and AUCPR under adversarial conditions (0.6954 vs. 0.7018). This

implies that adversarial manipulations targeting the textual component can offset the gains achieved

by integrating unstructured data. In contrast, the Topic Combined Model not only retains strong

predictive performance but also continues to outperform the Structured Model even when exposed to

adversarial inputs. This highlights the comparative robustness of topic-based representations when

used in combination with structured features.

These results suggest that while the integration of textual data can enhance prediction accuracy, it

may also introduce vulnerabilities depending on how that information is encoded. Topic-based abstrac-

tions appear to offer a more stable alternative to fine-grained embeddings in adversarial environments,

likely due to their reduced sensitivity to specific word choices.

To further illustrate the impact of adversarial attacks on the model predictions, Figure 4 visualizes

the changes in predicted default probabilities under adversarial attacks for the Combined Model and

the Topic Combined Model. Each plot shows the distributions of predicted probabilities for the original

data, manipulated samples designed to increase the predicted default probabilities, and manipulated

samples aimed at decreasing the default probabilities.

Figure 4: Kernel density estimates of predicted probabilities for the Combined Model (left) and the
Topic Combined Model (right) under original and adversarial conditions.
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For the Combined Model, adversarial manipulations produce visible shifts in the predicted prob-

ability distribution. Attacks intended to raise default probabilities result in a distribution with a

location that is moved more towards higher probabilities and with a lower right-skewness, indicating

heightened risk perception. Conversely, adversarial conditions to lower default probabilities shift the

location of the distribution toward lower predicted values and increase the right-skewness, potentially

leading to underestimated risk. These shifts demonstrate the vulnerability of models combining struc-

tured and unstructured data to adversarial attacks, which could significantly alter the perception of

borrower creditworthiness.

In contrast, the Topic Combined Model demonstrates much greater stability across conditions.

The distributions for the manipulated samples remain close to the original, indicating that topic

representations filter out much of the sensitivity to lexical perturbations. This robustness, combined

with strong baseline performance, positions the topic-based approach as a viable and interpretable

alternative to transformer-based representations in adversarial settings.

5.4 Performance of the robust model

To assess the effectiveness of adversarial training in improving model robustness, we evaluate both the

robust BERT model and the robust Combined Model under clean and adversarial conditions. Table

3 presents AUC and AUCPR values for both models.

Table 3: Performance of robust models under original and adversarial conditions.

AUC AUCPR Difference
Model Original Adversarial Original Adversarial AUC AUCPR
Robust BERT 0.6363 0.6129 0.2332 0.2111 0.0234*** 0.0221***
Robust Combined 0.7150 0.7086 0.2921 0.2860 0.0064 0.0061

Both robust models exhibit smaller performance declines under adversarial attacks than their

non-robust counterparts. The robust Combined Model, in particular, shows a notably reduced AUC

drop (0.0064) and AUCPR drop (0.0061), indicating improved stability. Importantly, it continues to

outperform the Structured Model under adversarial conditions in both AUC (0.7086 vs. 0.7018) and

AUCPR (0.2860 vs. 0.2806), underscoring the benefit of incorporating unstructured information in a

robust way.

When compared to the Topic Combined model, the robust Combined Model performs slightly

better on the original data in both AUC (0.7150 vs. 0.7140) and AUCPR (0.2921 vs. 0.2880).
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However, under adversarial conditions, the Topic Combined model achieves a marginally higher AUC

(0.7123 vs. 0.7086), while the robust Combined Model maintains a slightly higher AUCPR (0.2860 vs.

0.2818). These differences suggest a trade-off between the granularity of transformer-based embeddings

and the inherent stability of topic-based representations. Adversarial training enables the BERT-based

model to reach robustness levels comparable to the topic-based approach, while preserving its superior

predictive performance on clean data.

To complement the numerical findings, Figure 5 displays kernel density estimates of predicted

default probabilities under original and adversarial conditions for the Combined Model, the Robust

Combined Model, and the Topic Combined Model. Each subplot illustrates the distribution of pre-

dicted probabilities for the original data, as well as adversarially manipulated inputs designed to either

increase or decrease the predicted risk of default.

The distributions for the Combined Model (left panel) show substantial shifts in both directions,

indicating significant vulnerability to adversarial perturbations. In contrast, the Robust Combined

Model (center panel) exhibits notably more stable distributions, with smaller shifts in both increased

and decreased scenarios. This supports the conclusion that adversarial training effectively mitigates

model sensitivity to semantic manipulations.

Interestingly, the Topic Combined Model (right panel) shows similarly stable behavior under ad-

versarial conditions, with distributional shifts that are even more contained than those of the robust

BERT-based model. This visual evidence complements the performance metrics, suggesting that

topic-based representations offer inherent robustness to adversarial inputs.

Overall, these results reinforce the dual pathways to adversarial resilience: training neural models

with adversarial objectives, or using higher-level, interpretable representations that are less sensitive

to lexical variation.

5.5 Topic interpretation

To gain deeper insights into the thematic structure captured by the topic modeling approach, we ana-

lyze the topics learned from the data. Table 4 summarizes the eleven identified topics, including their

manually assigned labels, the five most representative words per topic, and the number of instances

assigned to each.

The topic modeling approach reveals that borrowers’ narratives can be meaningfully grouped into
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Figure 5: Kernel density estimates of predicted probabilities for the Combined Model (left), the Ro-
bust Combined Model (center), and the Topic Combined Model (right) under original and adversarial
conditions.

Table 4: Summary of the topics derived from borrower loan descriptions. Topic labels are manually
assigned based on the five most representative words.

Topic Label Top Words Count
Credit / Debt credit, loan, consolidate, debt, pay 15,559
Refinance / Payoff rate, refinance, payoff, apr, reduce 3,487
Investment investor, invest, fund, start, credit 3,290
Education university, graduate, degree, education, pay 2,112
Home Improvement house, need, property, repair, build 1,670
Business business, market, product, expand, service 1,112
Vehicle vehicle, car, finance, bike, honda 965
Necessity need, pay, urgent, help, repair 664
Wedding ring, engagement, loan, wedding, proposal 576
Medical surgery, medical, health, hospital, expense 283
Moving apartment, relocation, rental, expense, relocate 282

interpretable themes. Dominant categories include Credit / Debt, Refinance / Payoff, and Investment,

which together represent a substantial portion of the dataset. Other topics, such as Education, Home

Improvement, Medical, and Moving, reflect more specific financial needs. Notably, the topics align

well with real-world use cases and borrower intents observed in consumer lending.

To assess the robustness of these topic representations, we examine how topic assignments change

under adversarial manipulation-specifically, when the text is perturbed to reduce the predicted prob-

ability of default.3 Figure 6 shows the percentage of samples that transition from their original topic
3Results for adversarial samples aimed at increasing predicted probabilities are qualitatively similar and are provided

in Appendix D.
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to a new topic under such manipulations.

Figure 6: Transition matrix of topic assignments under adversarial perturbations aimed at decreasing
predicted default probabilities. Each row represents the original topic; each column the reassigned
topic. Diagonal values indicate the proportion of samples that retained their original topic.

Overall, the results demonstrate a high degree of topic stability. For all topics, more than 85% of

samples retain their original assignment even after adversarial manipulation. For instance, 94.4% of

”Vehicle” loans, 94.2% of ”Home Improvement” loans, and 93.7% of ”Wedding”-related texts remain

in their original categories. Even more general topics, such as ”Credit / Debt” and ”Education,” show

strong retention rates of over 85%. The relatively small off-diagonal values suggest that adversarial

perturbations tend to preserve the broader semantic structure of the text, which likely contributes to

the robustness observed in the Topic Combined model’s predictive performance.

These findings underscore the advantage of topic modeling in adversarial contexts: by abstracting

away from fine-grained lexical patterns, topic representations offer both interpretability and inherent

resilience to manipulation. This stability further enhances their appeal for high-stakes decision-making

environments, such as consumer credit scoring.
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5.6 Variable importance

To further examine how textual features contribute to credit risk prediction in the presence of

structured data, we analyze variable importance scores derived from a permutation-based approach

(Breiman, 2001; Fisher et al., 2019).4 Figure 7 presents the permutation importance of each feature

in the Combined Model, the Robust Combined Model, and the Combined Topic Model.

Figure 7: Permutation-based variable importance for the Combined Model (left), Robust Combined
Model (center), and Topic Combined Model (right). Higher values indicate greater contribution to
model performance.

Across all three models, term and fico emerge as the most influential features, which aligns with

domain knowledge regarding loan length and borrower credit score. In both the Combined Model

and the Robust Combined Model, the bert feature—representing the BERT-based textual predic-

tion—ranks as the third most important variable. This confirms that unstructured text information

provides substantial predictive value even in the presence of rich structured data.

In the Topic Combined Model, the topic variable—representing the set of topic-based dummy

variables—also contributes meaningfully to the prediction task, though its importance is slightly lower

than that of the BERT feature in the Combined Models. This suggests that while BERT embeddings

capture a more granular signal from text, the topic-based representations still encode substantial

credit-relevant information.

Notably, the importance scores for structured variables remain relatively consistent across models,
4We opt for permutation-based variable importance rather than more classical measures (e.g., absolute values of esti-

mated coefficients) because permutation-based methods provide a single, aggregated importance score for each predictor
(including multi-level factors), whereas coefficient-based methods yield multiple scores for a single categorical variable.
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indicating that the inclusion of unstructured features does not obscure or destabilize the contribution

of traditional credit attributes.

Overall, these results highlight that both BERT-derived and topic-based textual features signifi-

cantly enhance the predictive signal in credit scoring models. The permutation-based analysis offers

additional transparency into how different information sources interact, reinforcing the practical value

of integrating text into credit risk assessments.

6 Economic Impact of Adversarial Attacks on Loan Pricing

In this section, we evaluate the impact of adversarial attacks on loan pricing, focusing on the finan-

cial implications for both lenders and borrowers. From a lender’s perspective, the offered interest

rate should reflect the level of risk in the projected cash flows. Adversarial attacks that manipulate

predicted default probabilities can skew these estimates, leading to either over- or underestimation of

a loan’s profitability. Overestimated risks may result in lenders offering higher interest rates, while

underestimated risks could cause loans to be offered at an inaccurately low rate.

For each loan, we determine the appropriate interest rate based on the predicted default proba-

bilities and the corresponding installments. For the loss given default, we use the standard value of

0.45 from the Basel framework. The cash flows are then discounted at spot interest rates tied to the

loan’s issue date. The appropriate interest rate is obtained by finding the rate that equates the present

value of these cash flows to the initial loan amount. Since lenders will further additionally require a

slightly higher interest including a profit margin, we assume a profit margin of 6% that is added to the

interest rates. We conduct this analysis on both the clean test samples and the manipulated samples,

separated by manipulations aimed at increasing or decreasing predicted default risk.

Table 5: Mean appropriate interest rates for the Combined, Robust Combined, and Combined
Topic models under clean and adversarial conditions. The table also reports the average changes in
interest rates resulting from adversarial manipulations that either increase or decrease predicted default
probabilities. Significance levels for the differences are calculated using paired t-tests and adjusted
using Bonferroni correction for multiple testing. They are denoted as * padj < 0.1, ** padj < 0.05, ***
padj < 0.01.

IR IR decr. IR incr. Diff decr. Diff incr.
Combined Model 10.07% 9.11% 11.85% -0.96*** 1.78***
Robust Combined Model 10.38% 10.00% 11.41% -0.38*** 1.03***
Combined Topic Model 10.16% 10.04% 10.41% -0.12*** 0.25***

26



Table 5 shows that adversarial attacks can significantly impact loan profitability. The Combined

Model exhibits the largest shifts: an average underpricing of 0.96 percentage points when default

probabilities are artificially lowered, and an overpricing of 1.78 percentage points when they are

increased. Such mispricings can distort credit allocation, introduce lender risk, and generate fairness

concerns for borrowers.

By contrast, the Robust Combined Model, enhanced via adversarial training, significantly dampens

these distortions. Interest rate shifts are nearly halved, with changes of only -0.38 and +1.03 percent-

age points respectively. This demonstrates that adversarial training not only enhances classification

robustness, but also meaningfully mitigates economic misjudgments.

Interestingly, the Combined Topic Model shows the smallest pricing shifts: only -0.12 and +0.25

percentage points on average. While its predictive performance is marginally lower than the other

combined models on clean data, the Combined Topic Model exhibits a markedly higher degree of

robustness under adversarial conditions.

From the borrower’s perspective, these pricing shifts matter. In the worst-case scenario, a minor

change in wording could unjustly elevate a borrower’s predicted default risk, resulting in loan rejection

or an inflated interest rate. Conversely, strategic language manipulation could lead to artificially

lowered rates, undermining model fairness and lender profitability. Both cases raise concerns about

transparency, reliability, and equitable credit access.

In summary, adversarial attacks can induce substantial economic distortions in loan pricing, par-

ticularly in models that rely heavily on unstructured textual data. Adversarial training improves

resilience, minimizing the potential economic misjudgement. Topic-based models, while simpler, offer

compelling robustness and interpretability benefits. These results underscore the need for robustness

not only as a technical property, but as a central pillar of responsible, economically sound credit

modeling.

7 Conclusion

This study contributes to the body of research on credit default prediction by addressing a critical gap:

the robustness of machine learning models, particularly transformer-based models, that incorporate

unstructured text data. While the inclusion of textual borrower narratives has been shown to signif-

icantly improve predictive performance, our findings reveal a trade-off between predictive gains and
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increased vulnerability to adversarial manipulation. Even semantically subtle changes—imperceptible

to human reviewers—can drastically distort model outputs, thereby challenging the reliability of these

systems in real-world financial decision-making.

Our findings demonstrate that transformer-based models leveraging unstructured data are highly

sensitive to subtle semantic changes. Using adversarial text generation techniques, we show that even

minor, human-imperceptible modifications can substantially shift default predictions. This vulnera-

bility poses a significant risk in practical lending environments, where textual inputs may be altered

deliberately or simply vary due to differences in phrasing, writing style, or linguistic background.

To better understand these sensitivities, we apply explainable artificial intelligence methods and find

that model outputs are disproportionately driven by a small number of influential tokens. This raises

broader concerns around model fairness and consistency: borrowers with otherwise similar profiles may

receive divergent credit assessments based on small, semantically equivalent differences in expression.

We further demonstrate that these vulnerabilities can be effectively mitigated through adversarial

training. By exposing models to manipulated examples during training, we significantly improve their

robustness and reducing performance degradation under adversarial conditions. As an alternative

approach, topic modeling provides a more abstract representation of text that, while less granular,

offers greater interpretability and inherent stability against adversarial perturbations.

Finally, we evaluate the economic implications of adversarial attacks. Our analysis shows that

manipulated inputs can distort loan pricing, leading to financial losses for lenders and potentially

worse conditions or unfair rejections for borrowers. These distortions are markedly reduced in robust

model variants, highlighting the practical importance of resilience not just for model performance,

but for equitable and reliable credit allocation. From a broader perspective, our results speak to

a core modeling challenge in operations research: how to integrate unstructured data in ways that

are both powerful and robust. The comparison between fine-grained transformer models and topic-

based abstractions illustrates the trade-off between performance, interpretability, and stability. As

the adoption of unstructured data accelerates across domains, the need for robust, transparent, and

fair models becomes paramount.

In sum, we advocate for credit scoring systems that are designed with robustness as a first-order

objective, not just to safeguard against manipulation, but to ensure reliable, equitable, and trustworthy

financial decision-making in increasingly data-rich environments.
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A Structured Features

Table 6: Summary statistics for continuous and binary variables. The reported metrics include the
arithmetic mean (mean), standard deviation (sd), minimum (min), and maximum (max) values. The
total number of observations (N) is 40,229. The annual earnings are winsorized at the 1st and 99th
percentiles.

Attribute Unit Mean SD Min Max
Open accounts Count of accounts 10.449 4.633 0 53
Debt ratio Payment to income ratio 15.72 7.42 0.00 36.82
Loan amount Amount in USD 13,883.42 7,847.76 700.00 35,000.00
Employment title reported Binary indicator 0.051 0.220 0 1
Verified income Binary indicator 0.629 0.483 0 1
FICO score Interval center 707.523 33.653 632 848
Revolving credit utilization Credit used/available 50.07 28.17 0.00 113.00
Delinquency record Count of delinquencies 0.19 0.61 0.00 18.00
Loan term Time in months 41.629 10.169 36 60
Credit history length Time in month 171.504 79.646 36 684
Annual earnings USD (winsorized) 69,500.280 36,826.810 18,000 230,000
Revolving debt balance Amount in USD 15,400.790 19,328.970 0 1,746,716
Recent credit inquiries Number of inquiries (6 months) 0.819 1.045 0 8
State unemployment Unemployment rate 8.626 1.882 2.400 14.000
Housing price index Percent change (year-over-year) -5.325 10.838 -26.790 17.870
Income to installment ratio Fraction of income 0.007 0.003 0.0001 0.027
Job tenure unknown Binary indicator 0.023 0.150 0 1
Public record defaults Count of defaults 0.071 0.314 0 17
Loan default status Binary indicator 0.145 0.352 0 1
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B Hyperparameters

Table 7: Hyperparameter search spaces. This table shows the considered hyperparameter spaces for
the methods used in this study. The final hyperparameter combination is chosen based on validation
sample performance. The best hyperparameter value is shown in the fourth column.

Model Hyperparameter Parameter Space Best Hyperparameter
BERT Batch size 16, 32 0.5

Learning rate 5e-5, 3e-5, 2e-5 2e-5
Epochs 2, 3, 4 4
Temperature - 1.7229

Robust BERT Batch size 16, 32 0.4
Learning rate 5e-5, 3e-5, 2e-5 3e-5
Epochs 2, 3, 4 2
Temperature - 1.8193

Model Hyperparameter Parameter space Best hyperparameter
Structured Model Temperature - 1.8741
Combined Model Temperature - 2.0979
Robust Combined Model Temperature - 2.0318
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C Statistical Significance Tests for Model Performance

Model A Model B
BERT Topic Structured Combined Combined Topic

BERT - 0.0380*** -0.0619 -0.0742 -0.0741
Topic -0.038 - -0.0999 -0.1122 -0.1121
Structured 0.0619*** 0.0999*** - -0.0123 -0.0122
Combined 0.0742*** 0.1122*** 0.0123*** - 0.0001
Topic Combined 0.0741*** 0.1121*** 0.0122*** -0.0001 -

Table 8: Pairwise AUC differences between models based on the test set. Each cell reports the
difference AUCModel A − AUCModel B. Statistical significance is assessed using one-sided DeLong tests.
Reported p-values are adjusted for multiple comparisons using Bonferroni correction. Significance
levels are denoted as: * p < 0.1, ** p < 0.05, *** p < 0.01.

Model A Model B
BERT Topic Structured Combined Combined Topic

BERT - 0.0083 -0.0435 -0.0543 -0.0509
Topic -0.0083 - -0.0518 -0.0626 -0.0592
Structured 0.0435*** 0.0518*** - -0.0108 -0.0074
Combined 0.0543*** 0.0626*** 0.0108 - 0.0034
Topic Combined 0.0509*** 0.0592*** 0.0074 -0.0034 -

Table 9: Pairwise AUCPR differences between models based on the test set. Each cell reports the
difference AUCPRModel A − AUCPRModel B. Statistical significance is assessed using nonparametric
bootstrapping with 1,000 resamples. Reported p-values are adjusted for multiple comparisons using
Bonferroni correction. Significance levels are denoted as: * p < 0.1, ** p < 0.05, *** p < 0.01.
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D Topic Transition Matrix – Increased Probabilities

Figure 8: Transition matrix of topic assignments under adversarial perturbations aimed at increasing
predicted default probabilities. Each row represents the original topic; each column the reassigned
topic. Diagonal values indicate the proportion of samples that retained their original topic.
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