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Abstract

Accurately estimating loss reserves is critical for the financial health of insurance companies and
informs numerous operational decisions. We propose a novel neural network architecture that
enhances the prediction of incurred loss amounts for reported but not settled (RBNS) claims.
Moreover, differing from other studies, we test our model on proprietary datasets from a large
industrial insurer. In addition, we use bootstrapping to evaluate the stability and reliability of the
predictions, and Shapley additive explanation values to provide transparency and explainability
by quantifying the contribution of each feature to the predictions. Our model shows superiority
in estimating reserves more accurately than benchmark models, like the chain ladder approach.
Particularly, our model exhibits nuanced performance at the branch level, reflecting its capacity to
effectively integrate individual claim characteristics. Our findings emphasize the potential of using
machine learning in enhancing actuarial forecasting and suggest a shift towards more granular data
applications.
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1 Introduction

A fundamental aspect of operations within an insurance company is loss reserving. It is mandated

by regulatory frameworks such as Solvency II in Europe or ORSA in North America to maintain

financial health and solvency (EIOPA, 2019; NAIC, 2022) of the insurance company. Traditional loss

reserving methods, like the chain ladder method, are based on aggregating claims into a homogeneous

portfolio structured in a triangular shape which captures claims development over time. Besides

its original purpose of risk management, information on loss reserves and thereby a good prediction

of the ultimate claim amount is used in areas such as pricing, portfolio management, and strategic

business planning (Taylor, 2019). This need arises because accurate financial forecasting and decision-

making depends on knowing the full extent of liabilities and not just current ones. By ensuring that

the final claim amounts are correctly estimated, companies can more effectively set premia, assess

portfolio health and develop future growth strategies. This can improve overall financial stability

and operational efficiency across various functions. The traditional aggregated view treats all claims

in a portfolio as homogeneous, while unique characteristics of the claim are ignored. Thus, it relies

on the assumption that past patterns will continue in the future. This can be problematic with

changing external factors like inflation, which is usually not included in the predictions. However, this

information is vital to provide granular insights on the claim developments and allow for an up-to-date

handling of processes within the insurance. The importance of loss reserving within the insurance,

coupled with new advances in data collection and computational efficiency, call for more granular and

flexible approaches for loss reserving based on individual claims. Such methods can offer the flexibility

and adaptability to effectively respond to evolving market conditions and emerging risk patterns.

Our paper adds to this discussion by developing a new machine learning-based model architecture,

which maintains a level of complexity comparable to recently proposed models. We test this model on

two real claim portfolios of a large industrial insurance company. Although a few studies have used

machine learning techniques, a notable challenge is the limited availability of public individual claims

data. Hence, empirical studies on loss reserving often refer to the stochastic simulation machine by

Gabrielli and Wüthrich (2018). Therefore, our datasets offer a particularly interesting perspective on

investigating advanced machine learning techniques for loss reserving.

Typically, newer models which consider richer data on individual claims are either parametric

or use machine learning techniques. However, none have become a gold standard and advances are
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still needed. The approach proposed by Kuo (2020), while not surpassing chain ladder estimates

at an aggregate level for a specific simulated dataset, offer insightful individual claims forecasts, al-

though without benchmark comparisons at the granular level. Gabrielli (2020) reports individual

claims reserves within 2% of true payments across all lines of business (LoB) considered, yet with-

out benchmarking against other models. Chaoubi et al. (2023) find that, depending on the dataset,

their long short-term memory (LSTM) model either slightly overestimated reserves compared to the

chain ladder method or, in real data scenarios, provided closer approximations to actual reserves; this

highlights the machine learning potential for capturing claim trends more accurately than traditional

methods. However, their comparisons are limited to the chain ladder model. These studies emphasize

the ongoing need for advances in loss reserving methodologies. To the best of our knowledge, no pro-

posed model consistently outperforms the chain ladder approach when considering a broad spectrum

of scenarios.

Central to the task of loss reserving is predicting two claim types: claims incurred but not reported

(IBNR) to the insurance, and those reported but not settled (RBNS). This study focuses on RBNS

claims and suggests a machine learning algorithm tailored to the dynamic nature of the task at

hand and demand for more detailed analysis incorporating diverse granular claim characteristics. We

consider incurred losses as payments plus individual case reserves; here, expert information on case

reserves works as latent information which is included in the machine learning algorithm to predict the

cumulative incurred losses of the unknown periods. By leveraging standard deep learning techniques

for static features and a LSTM model with an added attention mechanism for dynamic features,

our model efficiently processes and combines these diverse inputs. The final predictions are made

through a straightforward decision-making process based on the predicted probability of changes in

cumulative losses by utilizing a composite loss function to optimize for both classification and regression

tasks. We benchmark our model against traditional methods, like the chain ladder approach1 and a

standard econometric model. In addition, we test against our machine learning algorithm but based

on incremental claim amounts, which is commonly employed as outlined by Kuo (2020) and Gabrielli

(2021), and the model proposed by Chaoubi et al. (2023). We assess the predictive performance of

the model by analyzing the percentage error of the estimated reserves for the entire portfolio and

sub-portfolios. Additionally, we compare models using the normalized mean absolute error (NMAE)
1Despite its simplicity, the chain ladder method remains one of the most commonly used method for loss reserving

(Wüthrich, 2018).
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and normalized root mean squared error (NRMSE) for the regression tasks, and balanced accuracy

for the classification tasks. Our comparative analysis shows that the neural network model, especially

when processing cumulative data, consistently outperforms traditional methods like the chain ladder

and linear regression models in estimating reserves for both property and liability lines. This granular

approach treats each claim individually. Hence, accounting for unique characteristics and specific

risk factors. As a consequence it provides a more detailed understanding of risk at the individual

claim level, which enhances risk mitigation strategies. Moreover, this methodology enables detailed

portfolio analysis and optimization, improving our insights into portfolio performance and profitability

within the insurance sector. The model also enhances pricing accuracy by facilitating more precise

and tailored pricing strategies, and supports a better alignment with actual risk by incorporating

individual claim details.

In addition, we employ a bootstrap aggregation technique (bagging) to improve the stability and

accuracy of both regression and classification tasks. Additionally, we thereby reduce variance and

avoid overfitting. We show that the neural network model, particularly when based on cumulative

data, consistently demonstrates superior accuracy and reliability than other models.

For any machine learning application, especially in the insurance domain, transparency and ex-

plainability of the driving features are crucial. For this, we provide Shapley additive explanation

(SHAP) values for the top ten features in both datasets for the regression and classification tasks.

Additionally, we present SHAP values for each time point (i.e., every development period). This il-

lustrates the benefits of our granular approach to loss reserving and highlights the complex interplay

of various features over time.

The remainder of this article is organized as follows: Section 2 presents the context and process of

loss reserving, and provides an overview of the literature on loss reserving models. Section 3 discusses

the used datasets. Section 4 introduces the proposed neural network architecture to estimate the

outstanding claim amounts. Section 5 presents the benchmark models. Section 6 discusses the results,

and adds insights on the robustness and explainability of the neural network model for loss reserving.

Finally, Section 7 presents the conclusions of the study.
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2 Loss Reserving and Literature Overview

2.1 Loss Reserving: An Economic Perspective

Loss reserving is a crucial and economically significant task within every insurance company (Radtke

et al., 2016). As depicted in Figure 1, the loss reserving process can be described as follows:2 First,

a claim occurs. After a certain delay, the policyholder reports the claim to the insurance company.

Based on the knowledge of the company at the time of reporting, parts of the claim might be settled

immediately or partially until the claim is closed. Before the final closure, the claim may be reopened,

and further payments and recoveries may happen. In non-life insurance, actuaries go beyond analyzing

raw claim payments by focusing on incurred losses, which are defined as the sum of raw claim payments

and case reserves. Case reserves are usually set by experts and represent their current estimate of the

outstanding loss on individual claims. The process involving payments, case reserves, and recoveries

upon closure or final closure is referred to as incurred loss adjustments.

Incurred losses change dynamically over time. Payments and case reserves are not necessarily

adjusted simultaneously. However, the incurred losses remain unaffected in scenarios where case

estimates automatically adjust with claim payments while keeping the overall incurred loss constant.

Additionally, for industrial insurance, incurred loss amounts may not change in every period, especially

for complex claims characterized by long settlement horizons. Ultimately, the total paid amount aligns

with the ultimate incurred loss amount, ensuring a balance in the final assessment. Our subsequent

analyses considers these specifics of industrial insurance and our machine learning methods are tailored

to address these characteristics.

At the evaluation date, denoted by t∗ and representing the starting point of our prediction task,

insurance companies distinguish between RBNS and IBNR claims. An IBNR claim has occurred before

the evaluation date but is reported and settled afterwards. For an RBNS claim, the claim’s occurrence

and reporting before the evaluation date, while the settlement takes place afterward. Our model is

specifically designed to leverage individual claim characteristics. As IBNR claims’ characteristics are

not observable at the time of evaluation, we exclusively focus on predicting RBNS claims.

We consider a portfolio comprising K reported claims, indexed by k = 1, . . . , K. Each claim is

reported after a specified time point. We use discrete points in time with development periods of

equal length; that is, each development period spans one year. We also assume that each claim in the
2A similar description can be found in M. Pigeon et al. (2014) and Pigeon and Duval (2019).
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Figure 1: Settlement process for a single insurance claim

portfolio is fully settled within a fixed number of n development periods. Therefore, for each claim,

we have development periods indexed by j = 0, . . . , n. Our objective is to predict the incurred losses

for the unknown periods t∗ + 1, . . . , n, for each claim k. Thus, at the evaluation date t∗, each claim is

in its specific development period. Our task is to estimate the remaining development periods until

settlement. Each claim’s development period at t∗ is defined by the number of discrete time points

before t∗.

Given an evaluation date t∗, the reserving task entails estimating the ultimate loss amount, S(k)
n ,

for each claim k. This amount represents the cumulative incurred amount at period n and is equivalent

to the ultimate paid amount at settlement, as the case reserve at settlement is zero. Thus, estimating

Ŝ(k)
n is based on all information available up to t∗. Hence, an individual claim’s estimated reserve at

t∗ is the difference between the estimated ultimate loss amount and incurred amount up to t∗, and

can be expressed by the following:

R̂
(k)
t∗ = Ŝ(k)

n − S
(k)
t∗ . (1)

Of course, predicting the cumulative incurred losses for the periods t∗ + 1, . . . , n is equivalent to

predicting the incremental amounts for those periods. In our empirical analysis, we compare predicting

cumulative incurred losses to incremental forecasts. The latter is defined as follows:
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Ŝ(k)
n = S

(k)
t∗ +

∑n

j=t∗+1
Ẑ

(k)
j , (2)

where Ẑ
(k)
j is the predicted incremental incurred loss for claim k in the development period j.

Equation 1 can be expressed in terms of Equation 2 as the sum of the incremental incurred losses

forecasted for the unknown periods:

R̂
(k)
t∗ =

∑n

j=t∗+1
Ẑ

(k)
j . (3)

Theoretically, there is a modeling equivalence between cumulative and incremental losses, making

both approaches valid. However, incremental losses are more commonly predicted in the literature.

By exploring both approaches, our model provides a robust and versatile tool for reserve estimation.

2.2 Loss Reserving: A Methodological Perspective

Traditional loss reserving methods, such as the chain ladder method, rely on aggregating claims into

a homogeneous portfolio, structured in a triangular format that captures the development of claims

over time. These methods have been extensively employed and studied. For example, Mack (1993)

introduce a distribution-free stochastic framework for the chain ladder method to quantify uncertainty

in reserve estimates. Additionally, Verrall (2000) explore various stochastic models that align with

chain ladder reserve estimates. Moreover, England and Verrall (2002), Pinheiro et al. (2003), and

England and Verrall (2006) introduce bootstrapping techniques, which help in integrating expert

judgments within a general linear model framework. For a comprehensive overview of traditional

methods, see Wüthrich (2008).

New advances in data collection and increasing dataset complexity have led to extensions of tra-

ditional approaches, evolving the univariate chain ladder method into multivariate extensions (Merz

& Wüthrich, 2008; Pröhl & Schmidt, 2005; Shi, 2017; Y. Zhang, 2010). The multivariate extensions

can aid in developing a portfolio of several correlated sub-portfolios by accounting for both contem-

poraneous correlations and structural relationships. However, the methods require strong structural

assumptions on the relation between sub-portfolios and the aggregate portfolio, which are often rather
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ad hoc. We emphasize that this presents a huge advantage of machine learning methods, whereby

non-linear dependencies are captured without strong ad hoc assumptions. While using aggregated

data for the chain ladder method is still the most popular approach, it has some limitations (Antonio

& Plat, 2014): the inadequacy in handling outliers (Verdonck et al., 2009), parameter overfitting

(Wright, 1990), and the presence of the chain ladder bias (Taylor, 2003). Antonio and Plat (2014)

provide a comprehensive overview of these limitations. They argue that the existence of these prob-

lems, along with extensive literature on the topic, suggests that using aggregate data with the chain

ladder method is not always suitable, especially when individual claims data are available.

Early contributions towards granular modeling on loss reserving are based on parametric models

(Buhlmann et al., 1980; Norberg, 1986). Arjas (1989) and Norberg (1993, 1999) model individual

claims development to compute reserves based on Position Dependent Marked Poisson Processes

(PDMPP). Larsen (2007) refines their approach by decomposing the complex stochastic process of

claim developments into independent segments corresponding to calendar years. By treating these as

independent segments, Larsen’s method allows the overall likelihood function to be separated into in-

dividual components, which can be maximized separately. This decomposition simplifies the stochastic

reserving model’s estimation process. Zhao and Zhou (2010) extend this idea by accounting for the

dependence of claim event times and covariates. Furthermore, Huang et al. (2015, 2016) develop a

stochastic model based on individual claim data that considers factors such as each claim’s occurrence,

reporting, and settlement times. Their model demonstrates a significant reduction in the mean squared

error loss compared to classical models based on aggregated data. Thus, their findings support the

use of models that leverage individual claim data.

In their review article, Wüthrich (2018) summarizes the benefits of machine learning in individ-

ual claims reserving. Pigeon and Duval (2019) explores these ideas by using different tree-based

approaches, like the XGBoost algorithm, to predict the total paid amount of individual claims. Mean-

while, Baudry and Robert (2019) use another tree-based ensemble technique, ExtraTrees, to compute

individual-level IBNR and RBNS claims reserves. A survey of recently developed claims reserving

techniques can be found in Taylor (2019), emphasizing that research in this area remains highly

relevant.

While loss reserving models have significantly evolved, including the adoption of machine learning

techniques, the limited availability of publicly accessible individual claims data remains a notable

challenge. To address this, Gabrielli and Wüthrich (2018) develop a stochastic simulation machine

8



based on neural networks to synthesize claims data and provide back-testing capabilities. Using this

stochastic simulation machine, Gabrielli (2020) and Gabrielli et al. (2020) integrate classical loss re-

serving models into neural networks. They initially align the network with a traditional model, such

as the over-dispersed Poisson, and then refine it through training to reduce prediction errors, effec-

tively leveraging a boosting-like method. Gabrielli (2021) present an individual claims reserving model

for reported claims, which uses summarized past information to predict expected future payments.

Instead, Kuo (2020) again focuses on the aggregated losses but consider the underlying time series

nature of the data. The author’s framework facilitates the joint modeling of paid losses and claims

outstanding, adapting to incorporate various data types. The author then tests their model on aggre-

gated datasets and demonstrates potential for broader application with more detailed data. Further,

Kuo (2020) introduce an individual claims model for RBNS claims incorporating an encoder LSTM for

past payments and a decoder LSTM for generating paid loss distribution, augmented by a Bayesian

neural network for uncertainty quantification. However, none of these proposed models consistently

and systematically outperform the classical chain ladder method for the used datasets. Chaoubi et al.

(2023) suggest a different model architecture using a LSTM network followed by two fully connected

layers to jointly predict the probability of a payment or recovery, and the corresponding amount. Their

model focuses on predicting incremental payments and treats static features as dynamic within the

network. While their model seemingly has an advantage over the chain ladder method, an extensive

set of benchmark models and large samples of actual data are missing.

3 Data

We first detail the underlying datasets used here and describe the different claim features. Subse-

quently, we outline how we use the data for training and testing purposes.

3.1 Data Description

Our data comprise proprietary claims data provided by a large industrial insurance company covering

both short-tail and long-tail LoBs, which are the property and liability lines.3 The scarcity of publicly

available, individual claims data in empirical studies of insurance loss reserving means that simulated

claims datasets are often used to enable the back-testing of the proposed models. For instance, Baudry
3Short tailed means that the claims are generally reported and settled more quickly. Meanwhile, long tailed means

that a significant proportion of total claims payments take a long time to be settled by the insurer.
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and Robert (2019), Kuo (2020) and Gabrielli (2021) all use synthetically generated data on individual

claims for their analysis. Moreover, when real claim data are utilized, the focus tends to be narrowly

on a single LoB, predominantly examining general liability insurance for private individuals.4 Thus,

the use of real-world, individual claim data from two distinct LoBs within the industrial insurance

domain is particularly interesting for analyzing the use of machine learning methods for insurance loss

reserving.

The property claim dataset contains a total of 66,208 claims arising from 16,713 distinct policies

reported from January 1, 2011, to December 31, 2016, where observations are available until the end

of 2021. The long tailed liability claims dataset includes 403,461 claims from 24,084 distinct policies,

reported from January 1, 2000, to December 31, 2011, where observations are available until the end of

2022. Thus, our data ensure a comprehensive analysis framework with at least six and twelve discrete

annual observation periods for property and liability claims, respectively. This timeframe aligns with

the assumption that claims are fully settled within the specified periods—six years for property and

twelve years for liability—corresponding to the internal reserving practices of the insurance company.

This extensive dataset allows to thoroughly analyze each claim’s development trajectory, providing a

critical advantage for back-testing our model against real-world outcomes.

The data can be dissected into two types of data. The first type includes static features, which are

fixed and do not change over time. The second type of data is dynamic; that is, these features may

vary over time.

The property dataset contains the following static features: the Contract category, which identifies

whether an insurance policy is part of an international program or a local policy; Contract type,

which is differentiated into standard, primary, layer, and master policies; Business type, segmented

into sole, lead, coinsurance, and indirect business, the Policy share, which captures the share of the

overall insured risk (ranging from 0% to 100%); Risk category, which classifies each claim into one

of 12 distinct risk categories5; Risk class, with values ranging from 1 to 10, with 10 signifying a

higher risk; Coverage, which is detailed with three different coverages; Covered perils, which include

three classes; Claim type, differentiated into attritional losses, large losses, and natural catastrophes;

Notification duration of the claim, measured in days; and Branch, indicating which of the 12 branches

the corresponding policy belongs to. The dynamic features are: the German real GDP (base year
4See for example M. Pigeon et al. (2014), Pigeon and Duval (2019) or Chaoubi et al. (2023).
5The risk category classification for each claim is determined based on the industry sector in which the insured

company operates.
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2011) and an internal Inflation mixture indices, created internally by the insurance company to reflect

inflationary trends relevant for the specific LoB.

The liability dataset comprises the following static features: the Contract category, Business type,

Policy share, the Risk category containing seven categories, the Coverage detailed by 12 different

coverages, the Notification duration, and the Branch. The dynamic features are the same as those

for the property dataset. The features used in our model for the two datasets are summarized in

Appendix A.

We remove claims categorized at the reporting date as large losses. At the point of notification, a

claims handler classifies each claim as either an attritional loss, a large loss, or a natural catastrophe.

The classification is based on whether the expected ultimate loss amount exceeds a predetermined

threshold specific to the LoB. Large losses, especially in the industrial insurance, can further increase

the inherent volatility of the data. This may distort the predictions of the model aimed at more

typical claim behavior. Therefore, it is usually analyzed and modeled separately (Denuit & Trufin,

2018; Riegel, 2014). In practice, reserving for large losses often involves a significant amount of

expert judgment and adjustments. Due to this complexity and the unique handling required for

these claims, we have excluded them from our analysis. Excluding large losses narrows our focus

to attritional patterns, enhancing model precision for typical claims. Moreover, it highlights the

necessity of separately addressing large losses for a holistic loss reserving approach. Notably, some

claims may ultimately develop into large losses, although they were initially categorized as attritional

losses. Hence, they remain a part of our datasets.

3.2 Training- and Testing-Setup

Grouping claims not only by their development period j but also by their reporting year, indexed by

i = 1, . . . , n, facilitates the structural organization of the data such that it aligns with traditional loss

reserving methods based on loss triangles. This structure enables us to define the cumulative incurred

loss amount for claim k, in reporting year i, and in development period j as S
(k)
i,j .

Figure 2 appropriately illustrates how the property dataset is organized in the form of a common

loss triangle. Here, each cell represents Si,j , which is the sum of the incurred losses of all claims that

were reported in year i and are in their development period j. This is helpful for visualizing the

comparison between our individual loss reserving approach and the traditional aggregated methods.

Moreover, we can visualize how we split our data into training, validation, and test sets.
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As our datasets contain the complete development trajectory of each claim up to their final devel-

opment period n, we first split the data into training and testing sets by setting the evaluation date t∗

to December 31, 2016, and December 31, 2011, for the property and liability datasets, respectively.6

The cumulative incurred loss amounts S
(k)
i,j for i + j ≤ n are observable Up to these dates for each

claim k and serve as our training data (represented in light gray in Figure 2). The incurred loss

amounts beyond this valuation date for i + j ≥ n + 1, which are not observable as of t∗, form the test

set (represented in dark gray in Figure 2).

That is, t∗ is the time point up to which data are considered known and used for training. Mean-

while, n represents the final development period for any claim. Data observed up to t∗ are used for

training, whereas those beyond t∗ are reserved for testing.

Further, we split the claims inside the training data randomly into the final training and validation

sets.7 To be more precise, 80% of these data are used for model training, while the remaining 20%

are used for model validation to evaluate the model’s performance and generalizability.

S0,0 S0,1 S0,2 S0,3 S0,4 S0,5

S1,0 S1,1 S1,2 S1,3 S1,4 S1,5

S2,0 S2,1 S2,2 S2,3 S2,4 S2,5

S3,0 S3,1 S3,2 S3,3 S3,4 S3,5

S4,0 S4,1 S4,2 S4,3 S4,4 S4,5

S5,0 S5,1 S5,2 S5,3 S5,4 S5,5

Training & Validation Test

Figure 2: Organization of the aggregated property dataset into a loss triangle for training and test
set construction

4 Methodology

To model individual claims development, we propose a specific neural network architecture tailored

to the claim settlement process. The key to our neural network model are two prediction goals:

estimating the unknown cumulative incurred loss amounts per period and the probability of changes

in these amounts within those periods. Neural networks, with their ability to discern complex patterns

within large datasets, have become pivotal in various insurance applications, including fraud detection
6Notably, with a greater observation timeline, a rolling window approach can be used to further test the model’s

stability over time.
7Claims reported at the most recent reporting year are excluded from the training process because here, only one

development period is known.
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(Gomes et al., 2021), pricing (Wüthrich, 2019), and enhancing customer service interactions (Ansari

& Riasi, 2016). Our approach integrates various deep learning building blocks that are particularly

suited for modeling the sequential nature of claim developments while leveraging information stored

in static features.

This section outlines our model architecture, and introduces the benchmark methods and evalu-

ation metrics used to assess predictive performance. The code for applying the proposed model to a

synthetic dataset (due to the confidentiality of our actual data) is available online.8

4.1 Model Architecture

The model architecture which is most similar to ours is introduced by Chaoubi et al. (2023). While

inspired by this architecture, we introduce significant changes: We treat static and dynamic features

individually within the network, include an attention mechanism besides our sequential model to

further enhance the network’s ability to focus on the input sequence’s relevant parts, and use a

decision rule for updating the predicted claim amounts.

Essentially, our model adopts a two-part approach: it separately processes static and dynamic

features before integrating them to produce two task outputs. Consequently, the model can capture

the unique characteristics of each type of feature. Further, the final prediction is based on a simple

decision rule that incorporates the two outputs: if the probability of a change in the cumulative

incurred loss amount exceeds a predefined threshold, the model updates its forecast using the output

of the regression task; otherwise, the current estimate is retained. The specific threshold is determined

post-training by analyzing the validation set, ensuring that the forecast over the next period depends

on a substantial probability of change.9 This approach mitigates the risk of over-adjustment during

periods of claim stability, thereby implicitly optimizing operational efficiency. This strategy contrasts

with the method proposed by Chaoubi et al. (2023), wherein the output of the regression task is

weighted by the predicted probability through the multiplication of these two quantities.

In summary, the model operates under the following assumptions: (1) Claim development patterns

are assumed to be consistent across reporting years. However, time dependence is introduced through

dynamic factors such as GDP and inflation, which change over time and impact the claims process.

These factors ensure that the model adapts to varying economic conditions, while maintaining the
8https://github.com/brandonschwab/advancing loss reserving.
9For a detailed description of the threshold determination, see Appendix B.
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assumption of underlying structural consistency in claim development. (2) Claims are fully settled

within predefined periods (six and twelve for property and liability claims, respectively). (3) The

final output is produced by combining the results of the regression and classification task, utilizing a

decision rule to update predictions based on the probability of change in the incurred loss amount.

In our network, the first step is processing the static features, which contain both quantitative and

categorical types. All static quantitative features are standardized. Each static categorical feature

is initially indexed and then processed by embedding layers, as introduced by Bengio et al. (2000).

According to Kuo (2020) and Gabrielli (2021), we embed categorical variables into two-dimensional

vectors. The processed static features are concatenated into a single vector, denoted by F̃(k)
0 and fed

into a fully connected (FC) layer10 with a Rectified Linear Unit (ReLU) activation function. This

yields the output vector F̃′(k)
0 .

Dynamic features, denoted by D(k)
j , are processed within our model by a LSTM layer, introduced

by Hochreiter and Schmidhuber (1997). This architecture is designed to handle sequential data by

maintaining a memory of past information. This is particularly useful for modeling the time-dependent

behavior in the claims reserving process. The LSTM operates on a sequence of dynamic features,

updating two crucial components at every time step: the cell state Cj and hidden state hj . These

states integrate new information provided by the current input, and are essential for the model to

remember and forget information through a process involving three gates. Specifically, the forget gate

controls the extent to which the previous cell state is retained. The input gate updates the cell state

by adding new information. The output gate decides which information from the cell state will be

used to generate the output hidden state, which is further used for predicting the next development

period. These operations allow the LSTM to maintain and manipulate its internal state over time,

providing the ability to remember information across sequences of variable lengths. We refer to Figure

3 for a visual representation of a single LSTM cell, which delineates the workflow through its various

gates. As the LSTM processes the sequence of dynamic features up to the last observed period, it

outputs a series of hidden states. The last hidden state is particularly important as it encapsulates

the information from the entire input sequence. This state is used for making the one-step-ahead

prediction for the coming unknown period.

To further refine the focus of the model on relevant temporal patterns, we introduce an attention
10For an in-depth understanding of deep learning principles, including dense layer functionalities, see Goodfellow et al.

(2016) and Chollet and Allaire (2018).
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Figure 3: LSTM cell

mechanism besides the set of hidden states. Attention mechanisms, initially popularized in the context

of neural machine translation (Bahdanau et al., 2014; Luong et al., 2015), allow a model to dynamically

focus on different parts of the input sequence to generate the output sequence’s each element. They

work by assigning weights to different input elements, indicating their relative importance for the task

at hand. This approach can significantly improve the performance of time series tasks, as demonstrated

by Lai et al. (2018), who empirically show improved performance across various time series domains. It

is also effective in financial time series predictions, where attention mechanisms have been successfully

used in conjunction with LSTMs (Kim & Kang, 2019; X. Zhang et al., 2019). This demonstrates this

approach’s adaptability and efficiency in diverse applications. Our dot product attention mechanism

is identical to that used by Lai et al. (2018) and is designed such that the hidden states can be only

influenced by its predecessors without affecting them in return. The mechanism also maintains the

temporal ordering of the sequences.

Finally, the processed static feature vector is replicated and concatenated with the attended hidden

states to form a comprehensive feature set for each period. The resulting feature vector is then fed

into another FC layer using the ReLU activation function, followed by two separate pathways to

produce the one-step ahead prediction. One pathway involves an FC layer with the identity activation

function to produce the regression output for the cumulative incurred loss amount of the next period,

defined as Ŷ
(k)

j+1. The second pathway utilizes an FC layer with a sigmoid activation function to get the

probability of a change in the cumulative incurred loss amount in the next period p̂
(k)
j+1. The proposed
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architecture is illustrated in Figure 4.
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Figure 4: Network architecture

Thus, the forecast for the cumulative loss amount Ŝ
(k)
j+1 can be expressed as follows:

Ŝ
(k)
j+1 =


Ŷ

(k)
j+1 if p̂

(k)
j+1 > θ

Ŝ
(k)
j otherwise,

(4)

where θ is the predefined threshold determined using an optimization criterion post-training.11

Here, Ŷ
(k)

j+1 is the model’s output for predicting the next period’s cumulative incurred loss amount.

This becomes the final prediction Ŝ
(k)
j+1 if the probability of a change p̂

(k)
j+1 exceeds θ.12

To optimize the hyperparameters of the network, we perform a two-staged approach. Initially,

Random Search is utilized to broadly explore the hyperparameter space, followed by a refinement

process using Bayesian Search. Our training methodology and hyperparameter tuning strategy, in-

cluding the two-staged approach’s specifics, are described in detail in the Appendix B. Notably, the

training process of our model, particularly during hyperparameter tuning, does demand considerable

computational resources (e.g., up to 9.25 hours for Random Search and 11.07 hours for Bayesian
11We provide a detailed explanation on how θ is optimally determined in the Appendix B.
12Meanwhile, the prediction method used by Chaoubi et al. (2023) is based on the product of the two model outputs

and can be described as: Ŝ
(k)
j+1 = Ŷ

(k)
j+1 × p̂

(k)
j+1.
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Search on an Amazon-EC2-G5.8xlarge instance). However, such computational demands should not

be a limiting factor for modern insurance companies. The potential for more accurate and flexible

predictions, which advanced methods like ours aim to achieve, can justify these resources when the

model outperforms classical methods.

5 Benchmark Models

To assess our propose model’s predictive performance, we compare the results, based on the test sets,

to several benchmark models, including aggregated and individual ones.

We apply the chain ladder method to our two aggregated datasets from the property and liability

LoBs. This helps in establishing a foundational comparison for our model, particularly given its wide

acceptance and usage in the industry for reserve estimation.

Further, we utilize the simplest form of econometric modeling: linear regression. This choice

allows us to emphasize the difference in predictive performance between a straightforward econometric

approach and complex neural network architecture at the individual claim level. Instead of using the

complete feature set, which may introduce noise and lead to overfitting, we employ a stepwise backward

elimination based on the Akaike Information Criterion (AIC) for feature selection. Starting with the

full model, which includes all predictors, we sequentially drop predictors while incorporating fixed

effects for both the reporting years and development periods to account for their temporal dynamics

(Friedman, 2009).

The linear regression model can be written as follows:

S
(k)
i,j+1 = β0 + ai + dj +

M∑
m=1

βm · f (k)
m +

P∑
p=1

βp · d
(k)
p,i,j + ϵ

(k)
i,j , (5)

where β0 is the intercept term; ai and dj are fixed effects for the i-th reporting year and j-th

development period; f (k)
m represents the m-th static feature included in the model, with βm being

the corresponding coefficient; d
(k)
p,n,j represents the p-th dynamic feature at development period j and

reporting year i, with βp being the corresponding coefficient; and ϵ
(k)
i,j represents the error term of the

k-th claim in reporting year i and development period j.13

13Note that this form of linear regression allows the prediction of negative values which can be interpreted as recoveries
occurring in practice.
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We also include the model architecture proposed by Chaoubi et al. (2023) for comparison. For this

benchmark, while we utilize incremental data following the modeling strategy used by the aforemen-

tioned authors, we also adapt the training process to mirror that of our model. Chaoubi et al. (2023)

suggest a method where the final prediction arises from the product of a non-zero loss’ predicted

probability and the regression task’s outcome. This approach contrasts with our use of a decision rule,

where we separately evaluate the two tasks before making a prediction. This inclusion is particularly

insightful as it allows us to directly assess the impact of the modifications we introduced.

Lastly, we extended the application of our model to incremental data. The training process re-

mained largely analogous to that used for cumulative data, with a change in setting up the classification

task and the final decision rule. In the context of incremental data, our classification objective trans-

formed to predicting the probability that the incurred loss amount in the upcoming period is non-zero.

The final prediction of the model is therefore given by the decision rule: If the probability of a non-

zero incurred loss amount exceeds the threshold, we use the regression task output and otherwise we

predict a zero amount.

In summary, these benchmark models—the chain ladder method, linear regression, the model

proposed by Chaoubi et al. (2023), and the adaptation of the model to incremental data—provide a

robust foundation for evaluating our novel approach. To compare the models, we assess the predictive

performance using the percentage error of the estimated reserve for the complete portfolio and sub-

portfolios. We also evaluate the individual cumulative loss forecasts’ accuracy by comparing the

normalized NMAE and NRMSE for our model’s the regression task, and balanced accuracy for the

classification task. By normalizing the error metrics by the standard deviation, we account for the

potentially decreasing variability in claims as they get settled over time, ensuring that the error metrics

do not artificially change simply due to reduced variability. Therefore, the normalization also facilitates

a fair comparison across different development periods. In the early development periods, claims are

often more volatile and less predictable due to the initial uncertainty. As time progresses and more

claims are settled, overall variability reduces. Normalizing the errors helps distinguish whether the

error reduction is genuinely due to better model performance or merely a consequence of the natural

claim settlement.

We use the normalized mean absolute error because it is inherently less sensitive to outliers.

Conversely, the normalized mean squared error provides a complementary perspective as it penalizes

larger errors more, and thus, provides insights into the predictions’ variability. Together, these metrics
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provide a holistic view of the model performance, encompassing the average accuracy and distribution

of the prediction error. Furthermore, the balanced accuracy is used to evaluate the classification

task of the models. Balanced accuracy is especially informative in the insurance claim context, as

the number of claim adjustments and none claim adjustments may not be evenly distributed over all

claims. This metric helps adjust for any imbalances by considering both the True Positive (sensitivity)

and True Negative Rates (specificity), thus providing a more accurate measure of the model’s ability

to correctly identify periods with and without changes in claim amounts. Balanced accuracy is the

average of sensitivity and specificity. Hence, it provides a more equitable evaluation by giving equal

weight to the performance on both the majority and minority classes. Consequently, it helps ensure

that the model is not biased towards the more frequent class, and can effectively and accurately

identify changes in the loss amounts.

6 Results

Here, we present the empirical results obtained from applying the proposed models to our datasets.

Additionally, we include the outcomes of a bootstrap analysis to assess therobustness and sensitivity

of the model. Finally, we identify the features that most significantly influence the predictions of the

neural network.

6.1 Model Performance

We first examine each model’s overall performance, quantifying this via the estimated reserves’ per-

centage error, shown in Table 1.

Table 1: Percentage error of the estimated reserve

Model Line of Business
Property Liability

Chain Ladder -14.36 -16.32
Neural Network -1.37 -1.18
Neural Network (Incr) 7.59 -16.28
C-LSTM 11.34 -18.58
Linear Regression -20.73 -61.37

We find a significant heterogeneity in performance across the models. Our neural network models

demonstrate superior accuracy, with the model based on cumulative data yielding the lowest percentage

errors: -1.37% for property and -1.18% for liability. This is better than the chain ladder method, which
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exhibits larger negative errors, indicating an underestimation of the reserves. Interestingly, the neural

network model applied to incremental data shows a notable deviation from the cumulative data-based

network. It exhibits a positive percentage error of 7.59% for property, suggesting overestimation, and

comparable underestimation to the chain ladder method for liability with a -16.28% error.

The C-LSTM model, following the methodology proposed by Chaoubi et al. (2023), exhibits a

similar pattern to our models but with larger percentage errors. With an 11.34% error for property,

it slightly outperforms the chain ladder model but still overestimates the underlying claims portfolio.

Conversely, for the liability line, the C-LSTM model shows an -18.58% error, indicating greater under-

estimation than traditional approaches. Clearly, our modifications in model architecture and reserve

estimation strategy are beneficial.

Lastly, the performance of the linear regression model highlights its limitations in handling claim

data complexity, significantly underestimating property by -20.73% and liability by -61.37%. Thus, the

simplicity of the model is inadequate for capturing the complex, possibly non-linear patterns present

in the data.

To provide deeper insights into the predictive performance of our model at the individual claim

level, we present each development period’s NMAE, NRMSE, and balanced accuracy. These metrics

are detailed in Tables 2-4 for property and Tables 5-7 for liability. These tables show the final prediction

errors of the neural network, and isolate the NMAE and NRMSE for the regression task alone (NNReg,

NN-incrReg, and C-LSTMReg). This allows to distinguish the classification task’s impact on prediction

accuracy.

Importantly, for the C-LSTM model, the final prediction is the product of the predicted claim

amount and predicted probability of a non-zero amount. This approach inherently differs from ours, as

it directly integrates the probability into the regression output to refine the prediction. This distinction

is crucial as it highlights the significance of the classification task in enhancing the performance of

the model, particularly when it accurately predicts periods without a change in the incurred claim

amount. This accuracy effectively reduces the error for those instances, which may even go to zero if

the last state is known.14

For the property line, the NMAE and NRMSE for all models, except for the linear regression,

decline over the development periods. This indicates the increasing accuracy of the models as they gain
14In the modeling strategy proposed by Chaoubi et al. (2023), the predicted probability or predicted loss amount must

be exactly zero for the prediction to be zero.
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Table 2: Normalized mean absolute errors by development period - Property

Development
Period

NMAE
NN NNReg NN-incr NN-

incrReg

C-LSTM C-
LSTMReg

LR

0 - - - - - - -
1 0.0459 0.0540 0.0475 0.0582 0.0717 0.0860 0.1589
2 0.0318 0.0439 0.0334 0.0495 0.0729 0.0886 0.1601
3 0.0252 0.0441 0.0281 0.0478 0.0598 0.0721 0.1588
4 0.0213 0.0479 0.0244 0.0458 0.0465 0.0609 0.1832
5 0.0188 0.0497 0.0225 0.0441 0.0448 0.0456 0.1760

Table 3: Normalized root mean squared error by development period - Property

Development
Period

NRMSE
NN NNReg NN-incr NN-

incrReg

C-LSTM C-
LSTMReg

LR

0 - - - - - - -
1 0.4686 0.6130 0.6601 0.6632 0.6876 0.7083 0.7652
2 0.3685 0.4186 0.4533 0.4628 0.6332 0.6516 0.8200
3 0.3322 0.3609 0.3940 0.4122 0.5087 0.5233 0.8721
4 0.3145 0.3336 0.3480 0.3796 0.4483 0.4564 0.9605
5 0.2985 0.3451 0.3289 0.3726 0.3673 0.3793 0.9588

more information about the trajectories of the claims over time. Notably, the neural network models’

(NN, NN-incr, and C-LSTM) final predictions consistently outperform the regression-only predictions

(NNReg, NN-incrReg, and C-LSTMReg). This highlights the significance of the classification task in

the prediction process, as it enables the model to identify periods where the incurred claim amounts

remain unchanged, potentially reducing the NMAE and NRMSE in those instances.

Moreover, for the C-LSTM model, the differences between the final predictions and regression

outputs are smaller than those observed in our proposed models. This may be attributable to the

C-LSTM’s approach, wherein the classification task is primarily used to scale the regression results

subtly rather than drastically altering them, which improves the prediction.

The balanced accuracy results, calculated for our neural networks (NN and NN-incr) and presented

in Table 4, follow a similar pattern. Accuracy generally increases over time, indicating the improving

capability of the model to correctly classify changes in claim amounts as claims progress. Notably, not

all claims follow the same settlement pattern. While our models assume a fixed number of periods for

full settlement, some claims may settle earlier. As the model adapts to these settlement patterns over

time, the classification task potentially becomes simpler with each passing period.

As the model progresses through successive periods, it becomes more proficient at identifying

patterns and anomalies within the claims data, refining predictions, and thus, likely resulting in the
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observed decrease in NMAE and NRMSE. This trend reflects the growing adeptness of the model

in predicting claim closure timings and adapting to the data’s evolving nature over the development

periods.

Table 4: Balanced accuracy by development period - Property

Development
Period

Balanced accuracy
NN NN-incr

0 - -
1 66.63 67.60
2 69.17 67.55
3 71.53 70.98
4 73.86 72.34
5 79.44 77.45

When examining the liability line, we observe patterns similar to those seen in the property line.

The models reveal a consistent decrease in NMAE over the development periods, as shown in Table

5. This trend is corroborated by the increasing balanced accuracy scores, provided in Table 7. The

NRMSE, detailed in Table 6, also diminishes over time albeit with less uniformity, hinting at the

influence of outliers in the reserving process. In industrial insurance, outliers are generally more

prevalent in the liability than in the property line. Liability claims often involve complex legal issues

and long-tail liabilities. This increases the likelihood of large, unpredictable claims that result in

outliers. Despite initially excluding claims marked as large losses, some claims evolve into large losses

during their lifecycle. This evolution can partially explain the observed variability in NRMSE values,

revealing areas where our model’s performance can be improved in predicting these evolving large-loss

claims within the liability line.

Next, we focus on a distinct advantage of our neural network model: its ability to perform runoff

analysis at various granular levels, such as the branch level. This is a particularly relevant aspect for

practical actuarial applications. Table 8 presents the percentage error in estimated reserves for the

property line across branches. The neural network models (NN, NN-incr, and C-LSTM) generally

exhibit improved accuracy than the chain ladder method, with notably precise estimates in certain

branches. Interestingly, for branch 300, the neural networks based on incremental data (NN-incr and

C-LSTM) show a lower percentage error than the cumulative model. This may be attributed to the

tendency of the former model to overpredict; in the context of large claims that disproportionately

affect reserve estimates, this may result in closer alignment with actual incurred losses. The cumula-

tive model’s underprediction of -10% suggests that it may not be effectively capturing the volatility
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Table 5: Normalized mean absolute errors by accident years - Liability

Development
Period

NMAE
NN NNReg NN-incr NN-

incrReg

C-LSTM C-
LSTMReg

LR

0 - - - - - - -
1 0.0862 0.0961 0.1001 0.1170 0.1640 0.1792 0.2329
2 0.0889 0.0888 0.1144 0.1142 0.1544 0.1714 0.2381
3 0.0806 0.0811 0.1029 0.1091 0.1466 0.1545 0.2186
4 0.0749 0.0764 0.0951 0.0973 0.1464 0.1455 0.2055
5 0.0622 0.0647 0.0810 0.0909 0.1249 0.1220 0.1802
6 0.0601 0.0676 0.0825 0.0843 0.1195 0.1213 0.1869
7 0.0579 0.0762 0.0781 0.0840 0.1160 0.1158 0.1872
8 0.0504 0.0789 0.0695 0.0802 0.1057 0.1076 0.1754
9 0.0447 0.0798 0.0630 0.0732 0.0972 0.0986 0.1684
10 0.0397 0.0769 0.0575 0.0647 0.0893 0.0926 0.1626
11 0.0359 0.0736 0.0550 0.0679 0.0858 0.0917 0.1568

Table 6: Normalized root mean squared errors by accident years - Liability

Development
Period

NRMSE
NN NNReg NN-incr NN-

incrReg

C-LSTM C-
LSTMReg

LR

0 - - - - - - -
1 1.0546 1.0806 1.0737 1.0851 1.1971 1.1993 1.1947
2 0.8638 0.8880 0.8810 0.8980 0.9574 0.9690 1.0071
3 0.6518 0.6772 0.6721 0.6829 0.8127 0.8526 0.9908
4 0.6930 0.7165 0.7315 0.7336 0.7989 0.7983 0.9973
5 0.8301 0.8322 0.8596 0.8671 0.9121 0.9197 0.9743
6 0.8975 0.9200 0.9381 0.9663 0.9888 1.0209 1.1084
7 0.9338 0.9339 0.9829 1.0206 1.0260 1.0145 1.1208
8 0.8943 0.8942 0.9345 0.9365 0.9648 0.9720 1.0519
9 0.8441 0.8681 0.9228 0.8912 0.9730 0.9308 1.0108
10 0.7915 0.8156 0.8259 0.8257 0.8709 0.8887 0.9744
11 0.7504 0.7518 0.7823 0.8071 0.8407 0.8429 0.9739

associated with such large claims. This demonstrates that different models may be appropriate for

large claims and can lead to improved performance. Overall, the performance across branches is het-

erogeneous. Despite this variability, the neural network model based on cumulative data generally

delivers better performance than its incremental counterpart.

Table 9 presents the percentage error of the estimated reserves by branch for the liability dataset.

The liability line results exhibit a similar pattern to the property lines, as the neural network models

generally demonstrate more accurate performance than the chain ladder and linear regression methods

across several branches. Particularly, the incremental data-based model (NN-Incr) shows a lower

absolute percentage error in branches 430 and 650, indicating more precise estimates in these cases.

However, the difference in performance compared to the cumulative model (NN) is not notably large,
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Table 7: Balanced accuracy by accident years - Liability

Development
Period

Balanced accuracy
NN NN-incr

0 - -
1 66.61 64.13
2 66.63 63.93
3 66.94 62.24
4 67.45 65.34
5 67.12 65.85
6 67.89 67.34
7 67.57 66.75
8 70.20 68.21
9 73.75 70.88
10 75.18 72.43
11 76.12 73.81

Table 8: Percentage error of the estimated reserve by branch - Property

Branch % Error
CL NN NN-Incr C-LSTM LR

100 -16.09 11.70 16.18 17.83 -18.34
130 -15.55 -2.64 3.07 7.24 -45.75
200 -13.40 9.65 29.21 34.48 -37.48
300 -18.20 -10.00 1.91 3.24 -43.11
400 -31.14 0.88 19.95 20.01 -65.97
430 -3.51 -2.43 3.43 7.11 -21.55
460 -14.58 -2.49 7.22 8.13 -58.61
650 -20.08 1.80 9.74 9.18 -41.03
700 -33.34 12.65 33.78 40.05 -77.50
800 -56.46 -3.70 10.06 15.33 -68.05
850 55.28 38.25 98.61 97.12 -98.79

suggesting that both models possess their strengths in handling the data for these specific branches.

Clearly, our neural network model, particularly when employing cumulative data, has consistently

outperformed traditional actuarial methods, such as the chain ladder, and simple econometric mod-

els, like linear regression, across both property and liability lines. Although the performance across

branches demonstrates some variability, the overall trend suggests that the neural network’s sophis-

ticated architecture is more adept at capturing the claims data’s complexities than the benchmark

models. The incremental neural network model also shows promise in certain segments, indicating

its potential applicability under specific conditions. The deviations observed in the cumulative data

model can be attributed to the incremental claims data’s inherent variability. Incremental data, which

captures changes in claims from period to period, may exhibit a more erratic trajectory than the cu-
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Table 9: Percentage error of the estimated reserve by branch - Liability

Branch % Error
CL NN NN-Incr C-LSTM LR

100 -56.90 -20.65 -43.05 -51.48 -87.47
130 -10.37 0.42 -33.51 -34.12 -89.12
200 -54.28 6.45 13.13 -16.79 -69.04
300 -23.11 12.49 -21.14 -22.55 -64.98
400 -38.46 -3.79 -19.77 -325.74 -59.26
430 -16.89 16.16 -16.00 -17.12 -71.83
460 -22.13 -15.90 -25.37 .26.42 -36.77
650 -38.78 -3.99 1.70 4.91 -55.39
700 -32.48 -15.34 -29.56 -33.23 -51.03
800 -18.62 17.71 -20.54 -22.38 -64.78
850 15.23 -16.61 -28.95 -30.01 -57.39

mulative data’s smoother progression. This complexity can lead to increased prediction errors. These

results highlight the neural network’s versatility and superior predictive capabilities, affirming its value

as a powerful tool for actuarial forecasting and reserve estimation.

6.2 Bootstrap Analysis

Here, we provide a more comprehensive statistical overview of the forecast performance of our neural

network and benchmark methods, including their capacity to estimate the impact of the uncertainty

related to the initial conditions. We utilize a bootstrapping technique to assess the quality and

reliability of our predictions. This method helps us generate a distribution over the predictions rather

than providing a single value for the estimated reserve (Efron & Tibshirani, 1994). The following

outlines the key steps and presents the corresponding results.

We first generate 100 bootstrapped datasets from our original training and validation dataset.

Each bootstrapped dataset is created by randomly sampling with replacement claim sequences; that

is, a time series of claim developments. Thus, each bootstrapped dataset retains the same size (i.e.,

same number of claims) as the original dataset. Subsequently, we divide each bootstrapped dataset

into training and validation sets using the same ratio as described in Section 3.2.15

Each neural network model (NN, NN-Incr, and C-LSTM) is trained on all 100 bootstrapped

datasets using the best hyperparameters identified by Random Search. Initially, we used the final

optimal hyperparameters obtained by Bayesian Search. However, this extended approach allows to
15The division into training and out-of-sample prediction sets occurs naturally by combining data and claim closure

in practice. Clearly, a longer time series with a rolling window can enable further robustness.
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further test the robustness and sensitivity of the model to different hyperparameter configurations,

providing a comprehensive evaluation of their performance. Meanwhile, the linear regression model

used the set of predictors identified from the original training dataset. After training each model on

the bootstrapped datasets, we obtain an ensemble of reserve predictors, enabling us to provide insights

into model confidence.

For the chain ladder method, we calculate predictors directly from each of the 100 bootstrapped

samples. The chain ladder method cannot be applied in the same manner as the neural network

models, which can use the trained models to make predictions based on the original dataset. This

is because the chain ladder method calculates development factors specific to the data it is applied

to. These factors cannot be directly used to predict another dataset. Instead, for each bootstrapped

sample, we use the reserve estimates generated by the chain ladder method, which is similar to the

bootstrapped chain ladder approach suggested by England and Verrall (2002).

Note that we could have also predicted the reserves for the neural networks based on the 100

bootstrapped samples. Ultimately, our methodology introduces an additional layer of uncertainty into

the neural networks’ predictions, making it more challenging for them to outperform the chain ladder

method.

Next, we discuss the reliability and performance of the different models based on the percentage

error of the ensemble point estimates across the 100 bootstrapped samples; that is, the point estimates

are obtained as the average reserve prediction across all individual predictions. This bootstrap ag-

gregation (bagging) technique improves the stability and accuracy of the classification and regression

task, reducing the variance and avoiding overfitting. Additionally, we use box plots to illustrate the

distribution of each model’s percentage errors’ distribution.16 The generated point predictions are

presented in Table 10 for the property and liability LoBs, revealing similar patterns to those observed

in the original estimates.

Crucially, the neural network models maintain their superior accuracy, with the cumulative neural

network model (NN) showing a slight increase in percentage error for property claims but still out-

performing all other models. The neural network models based on incremental data (NN-Incr and

C-LSTM) continue to overestimate (underestimate) property (liability) data, with a slight increase

(decrease) in percentage error. Both the chain ladder and linear regression models exhibit slight
16Given the sensitive nature of the data, we focus on showing the percentage errors of the point estimates and

these errors’ distribution across all predictions. This approach allows us to assess the model estimates’ variability and
uncertainty without revealing any sensitive information.
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Table 10: Percentage error of the mean estimated reserve

Model Line of Business
Property Liability

Chain Ladder -13.44 -15.53
Neural Network -2.47 -1.03
Neural Network (Incr) 9.91 -15.06
C-LSTM 11.71 -16.57
Linear Regression -19.29 -58.19

improvements for both datasets, indicating increased stability.

Figures 5 and 6 show box plots illustrating the error distributions, highlighting the median, quar-

tiles, and potential outliers in the predictions.

−80%

−60%

−40%

−20%

0%

20%

40%

60%

80%

CL NN NN−Incr. C−LSTM LR

P
er

ce
nt

ag
e 

E
rr

or

Figure 5: Boxplot of percentage errors across different models for the property line of business.

For both property and liability LoBs, the cumulative neural network model (NN) demonstrates

the smallest interquartile range (IQR) and least variability, indicating a high level of consistency and

accuracy across all model predictions. Consistently, for both LoBs, the neural network models based

on incremental data (NN-Incr and C-LSTM) exhibit greater variability, reflecting the higher dispersion

of percentage errors observed in the bootstrap analysis. Overall, the error distribution is higher for

these models compared to the cumulative model.

For the property line, the chain ladder method shows moderate variability but tends to under-
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estimate reserves, resulting in an overall negative distribution of errors. Conversely, for the liability

line, the chain ladder method shows substantially higher variability. The linear regression model pro-

vides generally inaccurate predictions, highlighting its limitations in accurately predicting reserves

and leading to a negative distribution of percentage errors.

−80%

−60%

−40%

−20%

0%

20%

40%

60%

80%

CL NN NN−Incr. C−LSTM LR

P
er

ce
nt

ag
e 

E
rr

or

Figure 6: Boxplot of errors across different models for the liability line of business.

Overall, the bootstrapping analysis offers valuable insights into the practical implications of uti-

lizing different models for loss reserving in the insurance sector. The neural network models, partic-

ularly the cumulative data ones (NN), demonstrate superior accuracy and consistency. This makes

them highly suitable for practical applications. The low variability and narrow IQR indicate reliable

performance, which is crucial for making informed decisions regarding reserve estimation.

6.3 Explainability

While we have examined the performance of the different reserving models, we have not yet addressed

a crucial aspect of using machine learning methods in insurance applications: the driving features’

transparency and explainability. For this, we rely on a state-of-the-art explainability technique used

for applications like ours: SHAP values (Lundberg & Lee, 2017). SHAP values offer insights into each

feature’s contribution to a specific prediction, enabling us to evaluate the importance and impact of
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various variables in the dataset. To determine this impact, each feature is systematically omitted to

observe the resulting change in the output of the model. This process is repeated across all possi-

ble feature combinations, ensuring that each feature’s importance is evaluated within every possible

feature set’s context (Lundberg & Lee, 2017). We calculate SHAP values for a randomly sampled

10% of our data. This helps ensure that we capture a comprehensive picture of feature importance

without overwhelming computational resources. After computing SHAP values, we aggregate them

to summarize each feature’s overall contribution to the predictions of the model. This aggregation

helps us identify which features are consistently influential and which have less impact. As a further

advantage this provides us with a clear understanding of the driving factors behind the behavior of

the model.

Figures 7 and 8 display the mean absolute SHAP values for the top 10 features in the property and

liability datasets, respectively, for both regression and classification tasks. The left panel of Figure 7

shows that for the regression task, Losses Incurred is the most important feature. This is unsurprising,

as the incurred loss directly relates to the amount to be predicted. In particular, we consider incurred

losses as payments plus individual case reserves. This expert information is critical because it reflects

the claims handler’s current estimate of the outstanding loss. Moreover, this information provides a

robust basis for future loss predictions. Interestingly, all other features, such as Business Type, Risk

Category, and Branch, only play a minor and do not significantly contribute to the regression task.

Thus, although these features provide additional context, the incurred losses predominantly drive the

model’s predictive accuracy for estimating future claim amounts.

The right panel of Figure 7 illustrates importance of different features for the classification task.

Here, we observe a different picture than that for the regression task. Although Losses Incurred

remains the most important feature, its relative importance is reduced compared with the regression

task. Other features, such as Business Type, Risk Category, and Branch, also show considerable

importance, highlighting their relevance in predicting changes in the cumulative incurred loss amounts.

These features capture various dimensions of risk and policy characteristics that can influence the

probability of changes in incurred losses. For instance, different business types and risk categories are

likely to exhibit distinct patterns in claim development and settlement, thereby affecting the likelihood

of adjustments in the incurred amounts.

For the liability dataset’s regression task (Figure 8), insights from the SHAP values are nearly

the same as for the property line. However, for the classification task, the magnitude and order of
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Figure 7: Feature importance based on SHAP values - Property

the features besides Losses Incurred differ compared to the property dataset. Other features, such as

Branch, Contract Category, and Coverage, only show slightly higher importance. Thus, while these

additional features contribute to predicting changes in the cumulative incurred loss amounts, their

impact remains relatively minor for liability claims.
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Figure 8: Feature importance based on SHAP values - Liability

To further illustrate the benefits of our granular machine learning approach to reserve prediction,

we provide SHAP values for the property dataset for each point in time (i.e., every development
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period).17 The left (right) panel of Figure 9 presents the regression (classification) task’s ten most

important features at each development period. This temporal analysis offers a more detailed un-

derstanding of how features’ importance evolves as additional information becomes available over the

claim development periods
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Figure 9: Feature importance based on SHAP values over time - Property

In the regression task, Losses Incurred consistently emerges as the most important feature across

all development periods, reaffirming its importance in predicting future claim amounts. This consistent

prominence underscores the direct relationship between the incurred losses and final amounts to be

predicted. As the development periods progress, the importance of Losses Incurred from previous

time points increases. Thus, earlier assessments of incurred losses accumulate valuable information,

enhancing the ability of the model to make accurate predictions. As additional information about the
17Due to the extensive number of development periods in the liability dataset, a similar figure can be excessively large

and hard to read. Hence, this detailed temporal analysis is focused solely on the property dataset. The results are
qualitatively similar and can be obtained from the authors upon request.

31



incurred losses becomes available over time, initial estimates are continually updated and improved

throughout the claim’s lifecycle.

For the classification task, the picture is slightly different. While information about the loss

amounts remains the primary driver, other variables such as Business Type, Risk Category, and Branch

also play crucial roles, particularly in the earlier development periods. As the claim evolves, these

features’ relative importance changes, highlighting the dynamic nature of the factors influencing the

likelihood of changes in incurred loss amounts.

For instance, Notification Duration and Contract Category exhibit varying importance across dif-

ferent stages. Thus, the timeliness of claim reporting and specific policy terms can significantly impact

the classification of claim developments at different points in time.

This temporal analysis highlights the complex interplay of various features over time, deepening

our understanding of how different factors influence reserve predictions throughout the claim lifecycle.

By examining these dynamics, we can achieve greater transparency and accuracy in the reserving

process, ensuring that predictions are informed by the most relevant and timely information.

7 Conclusion

Today, loss reserving is not just important for regulatory compliance and financial solvency. Besides

its original purpose of risk management, information on loss reserves and thereby a good prediction of

ultimate claim amounts is used in areas such as pricing, portfolio management, and strategic business

planning. This expansion of the application scope requires granular and flexible approaches for loss

reserving based on individual claims data. While the extant literature often assesses synthetic data to

facilitate the back-testing of such models, applications to real claim data are often limited to general

liability claims.

We propose a novel model architecture for predicting the development of incurred loss amounts

for RBNS claims. The key feature to our model is predicting the cumulative incurred loss amount

for the upcoming periods and probability of a change in this amount. Our model offers a refined

approach to loss reserving by using a data driven decision rule: the forecast is updated based on a

predefined probability threshold. We further conduct a comparative analysis with established models,

including the chain ladder method, the proposed model by Chaoubi et al. (2023), and a simple linear

regression model, as well as the proposed model trained on incremental data. To test the models, we
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utilize two proprietary datasets stemming from the short- and long-tail LoB from a large industrial

insurance. This is a sector which, to our knowledge, has not previously been explored using individual

loss reserving.

We find superior performance for our proposed model based on the aggregated data, measured by

the estimated reserve’s percentage error. Interestingly, the neural network model applied to incremen-

tal data exhibits a notable deviation from the network based on cumulative data and underperforms

compared with the latter. At the individual level, integrating the classification task emerges to be

important, as it progressively decreases the NMAE across successive development periods. We further

illustrate the model’s adeptness at conducting runoff analysis across diverse granularity levels, particu-

larly at the branch level. This versatility underscores the model’s adaptability to varied informational

needs and organizational structures within the insurance sector.

Moreover, we challenge our model by introducing uncertainty based on bootstrapping. The boot-

strap analysis shows that the cumulative neural network model (NN) consistently outperforms tra-

ditional methods, demonstrating superior accuracy and consistency in reserve estimation for both

property and liability lines. This method exhibits the least variability, indicating high reliability in

its predictions. This is critical for effective risk management and pricing strategies in the insurance

sector. Overall, the bootstrapping technique confirms neural network models’ robustness and suitabil-

ity for practical applications in loss reserving. We also address the importance of transparency and

explainability in machine learning models for insurance applications by utilizing SHAP values (Lund-

berg & Lee, 2017). SHAP values provide insights into each feature’s contribution to a prediction,

allowing us to evaluate the importance and impact of various variables in the dataset. By calculating

SHAP values for a randomly sampled 10% of our data, we identify the key drivers behind our model’s

behavior for both regression and classification tasks. We find that while Losses Incurred is the most

critical feature, other variables such as Business Type, Risk Category, and Branch also play significant

roles, especially in the classification tasks and at different development periods.

While our results focus on the predictive modeling of RBNS claims, a comprehensive approach to

claims reserves should also address IBNR reserves and the treatment of large losses, highlighting some

future research directions. To address claims that may evolve into large losses, we suggest investigating

the incorporation of predictive indicators and of ensemble techniques to improve prediction accuracy.

Although this approach adds complexity, it may offer a nuanced understanding and management of

large loss claims. Furthermore, integrating or developing an additional model tailored to handle the
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unique challenges posed by IBNR claims, which lack the detailed claim features available for RBNS

claims, is another crucial research area.
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A Data description

Tables 1 and 2 describe the set of features for the two datasets used in our model.

Table 1: List of covariates used for the property line of business dataset

Feature Datatype Static/Dynamic (s/d) # of categories
Contract category categorical s 2
Contract type categorical s 4
Business type categorical s 4
Policy share (%) numerical s -
Risk category categorical s 12
Risk class categorical s 10
Coverage categorical s 3
Covered peril categorical s 4
Claim type categorical s 2
Notification duration (days) numerical s -
Real GDP1 numerical d -
Internal inflation mixture indices1 numerical d -
Branch categorical s 11

1Forecast values were used for unknown periods to prevent data leakage.

Table 2: List of covariates used for the liability line of business dataset

Feature Datatype Static/Dynamic (s/d) # of categories
Contract category categorical s 2
Business type categorical s 4
Policy share (%) numerical s -
Risk category categorical s 12
Coverage categorical s 13
Claim type categorical s 2
Notification duration (days) numerical s -
Real GDP1 numerical d -
Internal inflation mixture indices1 numerical d -
Branch categorical s 11

1Forecast values were used for unknown periods to prevent data leakage.
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B Hyperparameters

The objective of the learning process is to optimize the network weights to minimize a loss function

tailored to the specific tasks - regression and classification. In our setting, the model weights are

updated after each mini batch using the Adaptive Moment Estimation (Adam) optimization algorithm,

introduced by Kingma and Ba (2014). We use its default parameters, recommended by the author’s,

and only tune the learning rate. Additionally, we adapt the learning rate throughout the training

process by implementing a decay strategy, which helps the network converge to a local minimum (You

et al., 2019). Specifically, we use the default settings and apply a learning rate decay every 10 epochs,

using a multiplicative factor set to 0.1.

A mini batch refers to a subset of the training data consisting of a predefined number of claim

sequences, each of varying lengths. We denote the lengths of the sequence for claim k as Lk. Thus,

Lk periods for claim k are known. The claim sequences within a batch are processed and evaluated

together in one iteration of the training algorithm. The learning rate and the batch size are therefore

hyperparameters and are fine-tuned.

For each claim sequence within the batch, we adopt a one step ahead prediction strategy. This

means, for a claim sequence of length Lk, we only feed the first Lk − 1 periods into the model to

ensure we always have a target value available for prediction. Therefore, for each period j of the

claim sequence, the model receives the static feature vector F(k)
0 and the set of dynamic features

{D(k)
1 , D(k)

2 , . . . , D(k)
j }, to predict the values for period j + 1.

The predictions are evaluated using two distinct loss functions, suitable for the two learning tasks.

For the regression task, we use the Mean Squared Error (MSE) loss function.18 In parallel, for the

binary classification task, we use the Binary Cross-Entropy (BCE) loss function.

The dual task learning approach offers multiple benefits. It reduces overfitting by utilizing shared

representations, facilitates faster learning by leveraging auxiliary information and improves data ef-

ficiency (Crawshaw, 2020). However, this approach requires the definition of a single, unified loss

function that effectively combines the individual losses. In our multi-task learning framework, we

define the unified loss function as:
18Note that in the reserve process also recoveries can occur. We therefore use the MSE loss function which allows for

negative values.
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Ltotal = w1(t) · LMSE + w2(t) · LBCE, (6)

where w1(t) and w2(t) are dynamic weights for the regression and classification tasks, respectively,

which are adjusted during training to balance the contribution of the two losses.

During training, the two tasks are optimized together using the combined loss function but at this

stage the predictions from the regression and classification tasks are not combined. Instead, the two

tasks are treated as independent outputs, each contributing to learning shared representations. To

balance the losses effectively and ensure that neither task dominates the training process we implement

the Gradient Normalization (GradNorm) algorithm, introduced by Zhao Chen et al. (2018). GradNorm

dynamically balances the weights w1(t) and w2(t) by monitoring the gradient norms of each task.19

Furthermore, we evaluate the loss function on the validation dataset to measure the network’s ability

to adapt to new data and prevent overfitting. The total number of epochs for our training process is

set to 100 and we integrated an early stopping mechanism that stops the training if the validation loss

does not improve for 10 consecutive epochs. For tuning we focus on the following hyperparameter:

the learning rate (lr), the hidden size of the static feature vector F̃′(k)
0 (qstatic), the size of the LSTM

hidden states hj (qlstm), the hidden size of the combined feature vector X̃(k)
j (qcomb), the batch size

(b), and the dropout rate (d).20 We start our search process by using Random Search to explore the

hyperparameter space rapid and broadly (James Bergstra & Yoshua Bengio, 2012). The search space

for our model’s hyperparameters is guided by general recommendations from Bengio (2012) and Greff

et al. (2017) and is configured for both data sets as follows:

• The learning rate is sampled from a log-uniform distribution, defined over the interval [1e−5, 0.1].

Here, the log-uniform distribution is used to explore candidate values that vary over several

orders of magnitude.

• The hidden sizes qstatic, qlstm and qcomb are sampled from the discrete set {32, 64, 128, 256}.

• The batch size is sampled from the discrete set {1024, 2048}.

• The dropout rate is uniformly sampled from the interval [0.1, 0.5].
19For a detailed explanation of GradNorm, we refer to Zhao Chen et al., 2018.
20Dropout randomly sets a predefined percentage of neurons to zero during training, which helps prevent overfitting

by ensuring that the network does not become overly reliant on any specific neuron (Srivastava et al., 2014).
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After running the Random Search process with a total of 32 configurations, we refined our hy-

perparameter tuning using Bayesian Opimization (Snoek et al., 2012). Based on the outcomes of the

Random Search, we identified the top three configurations and used their parameter ranges to define

the search space for Bayesian Search. In constructing the search space for Bayesian Optimization,

we took into consideration the parameter ranges observed in the top configurations from the Random

Search. The upper and lower bounds for each parameter in the Bayesian search space were set based

on the extremities of these ranges, ensuring a focused yet comprehensive exploration in the subse-

quent optimization phase. To thoroughly explore the refined search space, we evaluated 32 further

configurations. The results of this two-stage hyperparameter tuning approach, including the top three

configurations from the Random Search, and the final optimal configurations identified, are detailed

in tables 1, 2 and 3 for both data sets analyzed in our study.

Table 1: Top three hyperparameter settings resulting from Random Search based on the property
dataset.

lr qstatic qlstm qcomb batch dropout

Cumulative
1. 0.004 64 128 128 1024 0.429
2. 0.001 32 64 128 1024 0.315
3. 0.003 128 64 64 1024 0.442
Incremental
1. 0.00025 256 32 256 1024 0.1245
2. 0.00022 256 128 128 1024 0.3971
3. 0.00215 128 256 256 1024 0.2467

Table 2: Top three hyperparameter settings resulting from Random Search based on the liability
dataset.

lr qstatic qlstm qcomb batch dropout

Cumulative
1. 0.0935 128 128 128 1024 0.4854
2. 0.0439 64 128 128 1024 0.4081
3. 0.0043 128 256 64 1024 0.0.3854
Incremental
1. 0.0296 64 32 32 1024 0.2516
2. 0.00088 128 64 64 1024 0.2487
3. 0.0273 128 64 32 1024 0.2340

To integrate the two learnt tasks into the proposed decision rule for making predictions on unseen

data, the threshold θ is determined based on the predicted probabilities obtained from the validation
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Table 3: Best hyperparameter settings from Bayesian Search

Property Liability
Cumulative Incremental Cumulative Incremental

lr 0.004 0.00043 0.0851 0.0273
qstatic 128 256 128 64
qlstm 128 128 128 128
qcomb 128 128 128 128
batch 1024 1024 1024 1024
dropout 0.378 0.338 0.458 0.2509

set. These probabilities were generated by the model trained one the training set with the best hyper-

parameter configuration identified through the tuning process. Specifically, we stored the predicted

probabilities of a change in the cumulative incurred loss amounts and the corresponding true labels

of the classification task and used a Receiver Operating Characteristic (ROC) curve to choose the

threshold θ which maximizes the difference between the True Positive Rate and the False Positive

Rate.21 This threshold is crucial for translating the outputs of the regression and classification tasks

into actionable predictions.

Finally, we trained the model with the best hyperparameters on both the training and validation

sets to predict the test set. For predicting future data points in the test set, we employed a recursive

multi-step forecasting approach. In this method, the model uses its own predictions from previous

time steps as input to forecast subsequent time steps. The time required for this training on a Amazon-

EC2-G5.8xlarge instance is given in Table 4 for for both data sets, separated by Random and Bayesian

Search.

Table 4: Training time in seconds

Property Liability
Cumulative Incremental Cumulative Incremental

Random Search 11764 12759 29460 33289
Bayesian Search 14521 16632 36235 39854

21For a comprehensive explanation of ROC curves, see Fan et al. (2006).
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